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5. Graphing and Optimization

5-1 First Derivative and Graphs

Learning Objectives

@ Use the first derivative to determine when functions are increasing or decreasing.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Learning Objectives
@ Use the first derivative to determine when functions are increasing or decreasing.
@ Use the first derivative test to determine the local extrema of functions.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Correspondence between behavior of f/(x) at = ¢ and behavior of graph of
f(x) atthatz = ¢

@ f’is positive at z = ¢ <= The line tangent to graph of f at = = c exists and it tilts
upward.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Correspondence between behavior of f/(x) at = ¢ and behavior of graph of
f(x) atthatz = ¢

@ f’is positive at x = ¢ <= The line tangent to graph of f at z = c exists and it tilts
upward.

@ f’is negative at x = ¢ <= The line tangent to graph of f at = = c exists and it tilts
downward.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Correspondence between behavior of f/(x) at = ¢ and behavior of graph of
f(x) atthatz = ¢

@ f’is positive at x = ¢ <= The line tangent to graph of f at z = c exists and it tilts
upward.

@ f’is negative at x = ¢ <= The line tangent to graph of f at = = c exists and it tilts
downward.

@ f'is zero at x = c <= The line tangent to graph of f at z = c exists and it is
horizontal.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Now talk about behavior on an interval, not just at some particular z = c.

DEFINITION

Words: f is increasing on the interval a < x < b
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Now talk about behavior on an interval, not just at some particular z = c.
DEFINITION
Words: f is increasing on the interval a < x < b

Meaning: If a < 21 < z2 < bthen f(z1) < f(x2)
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Now talk about behavior on an interval, not just at some particular z = c.
DEFINITION

Words: f is increasing on the interval a < z < b

Meaning: If « < z; < z2 < bthen f(z1) < f(z2)

Graphical interpretation: If you move from left to right across the interval, the
y—values go up
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Now talk about behavior on an interval, not just at some particular z = c.
DEFINITION

Words: f is increasing on the interval a < z < b

Meaning: If « < z; < z2 < bthen f(z1) < f(z2)

Graphical interpretation: If you move from left to right across the interval, the
y—values go up

DEFINITION
Words: f is decreasing on the interval a < z < b
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DEFINITION

Words: f is increasing on the interval a < z < b

Meaning: If « < z; < z2 < bthen f(z1) < f(z2)

Graphical interpretation: If you move from left to right across the interval, the
y—values go up

DEFINITION
Words: f is decreasing on the interval a < z < b

Meaning: If « < z; < z2 < bthen f(z1) > f(z2)
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Now talk about behavior on an interval, not just at some particular x = c.
DEFINITION

Words: f is increasing on the interval a < z < b

Meaning: If « < z; < z2 < bthen f(z1) < f(z2)

Graphical interpretation: If you move from left to right across the interval, the
y—values go up

DEFINITION
Words: f is decreasing on the interval a < z < b

Meaning: If a < 21 < 22 < bthen f(z1) > f(x2)

Graphical interpretation: If you move from left to right across the interval, the
y—values go down
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Correspondence between behavior of f” on an interval and behavior of f on
that interval

@ f’is positive on interval a < x < b <= f is increasing on interval a < x < b.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Correspondence between behavior of f” on an interval and behavior of f on
that interval

@ f’is positive on interval a < x < b <= f is increasing on interval a < x < b.

@ f’is negative on interval a < = < b <= f is decreasing on interval a < x < b.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Correspondence between behavior of f” on an interval and behavior of f on
that interval

@ f’is positive on interval a < x < b <= f is increasing on interval a < x < b.
@ f’is negative on interval a < = < b <= f is decreasing on interval a < x < b.

@ f’is zero on whole interval a < = < b <= f is constant on the whole interval
a<x<b.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

THEOREM 1: Increasing and Decreasing Functions

On the interval (a, b)
f(z) f(z) Graph of f
increasing rising
— decreasing falling
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXAMPLE 1

Find the intervals where f(x) = x> + 6z + 7 is rising and falling.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXAMPLE 1

Find the intervals where f(z) = x* 4 6z + 7 is rising and falling.
From the previous table, the function will be rising when the derivative is positive.

f/(ac) =2 +6

2z + 6 > 0 when 2z > —6, or x > —3.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXAMPLE 1

Find the intervals where f(z) = x* 4 6z + 7 is rising and falling.
From the previous table, the function will be rising when the derivative is positive.

f(x)=22+6
2z + 6 > 0 when 2z > —6, or x > —3.

The graph is rising when =z > —3.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXAMPLE 1

Find the intervals where f(z) = x* 4 6z + 7 is rising and falling.
From the previous table, the function will be rising when the derivative is positive.

f/(ac) =2 +6
2z + 6 > 0 when 2z > —6, or x > —3.
The graph is rising when =z > —3.

2z + 6 < 0 when z < —3, so the graph is falling when = < —3.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXAMPLE 1
A sign chart is helpful:

10

+ + + + Iu

-5 N4 ﬁ3/2/ S1 1 2
=2
(—00,-3) (=3,00)

f/(x)————0++++++++
*- x
f@) Decreasing—3 Increasing
4
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Partition Numbers and Critical Values
A partition number for the sign chart is a place where the derivative could change sign.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Partition Numbers and Critical Values

A partition number for the sign chart is a place where the derivative could change sign.
Assuming that f’ is continuous wherever it is defined, this can only happen where f
itself is not defined, where f’ is not defined, or where f’ is zero.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Partition Numbers and Critical Values

A partition number for the sign chart is a place where the derivative could change sign.
Assuming that f’ is continuous wherever it is defined, this can only happen where f
itself is not defined, where f’ is not defined, or where f’ is zero.

DEFINITION Critical Values

The values of = in the domain of f where f’(z) = 0 or does not exist are called the
critical values of f.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Partition Numbers and Critical Values

A partition number for the sign chart is a place where the derivative could change sign.
Assuming that f’ is continuous wherever it is defined, this can only happen where f
itself is not defined, where f’ is not defined, or where f’ is zero.

DEFINITION Critical Values

The values of = in the domain of f where f’(z) = 0 or does not exist are called the
critical values of f.

Insight:

All critical values are also partition numbers, but there may be partition numbers that
are not critical values (where f itself is not defined).
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Partition Numbers and Critical Values

A partition number for the sign chart is a place where the derivative could change sign.
Assuming that f’ is continuous wherever it is defined, this can only happen where f
itself is not defined, where f’ is not defined, or where f’ is zero.

DEFINITION Critical Values

The values of = in the domain of f where f’(z) = 0 or does not exist are called the
critical values of f.

Insight:

All critical values are also partition numbers, but there may be partition numbers that
are not critical values (where f itself is not defined).

If fis a polynomial, critical values and partition numbers are both the same, namely
the solutions of f'(x) = 0.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXAMPLE 2
flx) =1+ 23, f'(x) = 322, Critical value and partition point at z = 0.
y
2 u
a s
-2 1 1 2
_2 i
(7007 0) (07 OO)
pao tE A
& X
f(z) Increasing 0 Increasing
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Local Extrema

@ When the graph of a continuous function changes from rising to falling, a high
point or local maximum occurs.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

Local Extrema
@ When the graph of a continuous function changes from rising to falling, a high
point or local maximum occurs.

@ When the graph of a continuous function changes from falling to rising, a low point
or local minimum occurs.

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  13/89



5. Graphing and Optimization

5-1 First Derivative and Graphs
Local Extrema
@ When the graph of a continuous function changes from rising to falling, a high

point or local maximum occurs.

@ When the graph of a continuous function changes from falling to rising, a low point
or local minimum occurs.

V.

DEFINITION Local extrema
Words: f has a local max (min) atz = ¢
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5. Graphing and Optimization

5-1 First Derivative and Graphs
Local Extrema
@ When the graph of a continuous function changes from rising to falling, a high

point or local maximum occurs.

@ When the graph of a continuous function changes from falling to rising, a low point
or local minimum occurs.

V.

DEFINITION Local extrema

Words: f has a local max (min) atz = ¢
Meaning: f(c) exists, f(c) is the highest (lowest) y—value nearby. That is for all  near

x=c, f(c) > (L) f(z).
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5. Graphing and Optimization

5-1 First Derivative and Graphs
Local Extrema
@ When the graph of a continuous function changes from rising to falling, a high

point or local maximum occurs.

@ When the graph of a continuous function changes from falling to rising, a low point
or local minimum occurs.

V.

DEFINITION Local extrema

Words: f has a local max (min) atz = ¢

Meaning: f(c) exists, f(c) is the highest (lowest) y—value nearby. That is for all  near
z=c f(c) =2 (2)f(z).

We says that the local max (min) occurs at x = ¢, but the value of the local max (min) is
the y—value f(c).

v

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  13/89



5. Graphing and Optimization

5-1 First Derivative and Graphs

Local Extrema
@ When the graph of a continuous function changes from rising to falling, a high
point or local maximum occurs.

@ When the graph of a continuous function changes from falling to rising, a low point
or local minimum occurs.

.

DEFINITION Local extrema

Words: f has a local max (min) atz = ¢

Meaning: f(c) exists, f(c) is the highest (lowest) y—value nearby. That is for all  near
z=c f(c) =2 (2)f(z).

We says that the local max (min) occurs at x = ¢, but the value of the local max (min) is
the y—value f(c).

v

THEOREM Existence of Local Extrema

If f is continuous on the interval (a, b), c is @ number in (a,b), and f(c) is a local
extremum, then either f'(c) = 0 or f’(c) does not exist. That is, c is a critical point.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

First Derivative Test

Let ¢ be a critical value of f. Thatis, f(c) is defined, and either f'(c) = 0 or f'(c) is not
defined. Construct a sign for f’(x) close to and on either side of c.

On the interval (a, b)
f(z)leftof ¢ | f(x)rightof ¢ f(e)
Decreasing Increasing local minimum at ¢
Increasing Decreasing local maximum at ¢
Decreasing Decreasing not an extremum
Increasing Increasing not an extremum

Fabien Navarro (SAMM) Master PIREH
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5. Graphing and Optimization

5-1 First Derivative and Graphs

/' (c) = 0: Horizontal Tangent

f(@) (@)

? / /) f'ﬁ
e ‘
fllx) | — = =0+ + + @)+ + +0- - —

(A) f(c) is a local minimum  (B) f(c) is a local maximum
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5. Graphing and Optimization

5-1 First Derivative and Graphs

f'(c) = 0: Horizontal Tangent

f() f(@)
7(e) ‘ 7(e) ‘
F@)|++ 40+ + + flla)| — = —0— — —

(C) f(c) is neither a local max (D) f(c) is neither a local max
nor a local min nor a local min
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5. Graphing and Optimization

5-1 First Derivative and Graphs

f'(c) is not defined but f(c) is defined

() f(z)
T AL

f(e) ‘ 3

fl@)| = = =ND+ + + | f'(x)| + + +ND— — —

(E) f(c) is a local minimum  (F) f(c) is a local maximum
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5. Graphing and Optimization

5-1 First Derivative and Graphs

f'(c) is not defined but f(c) is defined

f(z) f(z)
flo)t | flo)t ‘
: x : x
T=c r=c
fix)| + + +ND+ + + fl(x)| — — -ND— — —
(G) f(c) is neither a local max  (H) f(c) is neither a local max
nor a local min nor a local min
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5. Graphing and Optimization

5-1 First Derivative and Graphs

THEOREM 3 Intercepts and Local Extrema of Polynomial Functions
If
f(z) = anz™ + an—12"" " .+ aiz1 + a0, an #0,

is an n'" —degree polynomial, then f has at most n z—intercepts and at most (n — 1)
local extrema.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

THEOREM 3 Intercepts and Local Extrema of Polynomial Functions
If
f(z) = anz™ + an1z" ' 4. a1z +ao, an #0,

is an n'" —degree polynomial, then f has at most n z—intercepts and at most (n — 1)
local extrema.

THEOREM 3 does not guarantee that every nth—degree polynomial has exactly n — 1
local extrema; it says only that there can never be more than n — 1 local extrema.
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXERCISES

1. Use a sign graph to determine the intervals where x in increasing or decreasing.
Give your answers in interval notation.

a. f(x) = 152% — 30z — 60
b. f(z) = 42® — 32°

2. Determine the intervals where g(z) is increasing or decreasing. Identify the critical
values of g(z).

a. g(z) = % — 2% — 15z + 4
b. g(a) = 25
3. Let f(z) = —a* + 5022
a. Finds intervals where f is increasing or decreasing. Present the answers three
ways: inequality notation and interval notation
b. Find x—coordinates of all local extrema.
c. Find the y—values of the local extrema.
d. Sketch a graph
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5. Graphing and Optimization

5-1 First Derivative and Graphs

EXERCISES
4. Given that f(x) is continuous on (—oo, o0), use the information to sketch a graph of

f(@).

f(4)=0,f1)=9
F(1)=0,f(z) >0, on (1,00)
f'(z) <0, on (—oo,1)

5. Determine the local extrema for the functions in Exercise 2.
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5. Graphing and Optimization

e 5-2 Second Derivative and Graphs
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Learning Objectives
@ Use the second derivative to determine the concavity of functions.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Learning Objectives
@ Use the second derivative to determine the concavity of functions.
@ Use the second derivative to determine the inflection points of functions.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Learning Objectives
@ Use the second derivative to determine the concavity of functions.
@ Use the second derivative to determine the inflection points of functions.
@ Solve applications involving the point of diminishing returns.

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  23/89



5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Concavity at a particular = value
Words: fis concave up atx = ¢
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5. Graphing and Optimization

5-2 Second Derivative and Graphs
DEFINITION Concavity at a particular = value
Words: fis concave up atx = ¢

Meaning: The graph of f has a tangent line at © = ¢ and for z—values near z = ¢, the
graph of f stays above the tangent line.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs
DEFINITION Concavity at a particular = value
Words: fis concave up atx = ¢

Meaning: The graph of f has a tangent line at © = ¢ and for z—values near z = ¢, the
graph of f stays above the tangent line.

f(z) f(z)

f T
r=3 r=3

fconcaveupatz =3 f concave down at x = 3

t
I
I
I
I
I
I
T
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Concavity on an interval
Words: f is concave up on anintervala < x < b

Meaning: For every = c where a < ¢ < b, f is concave up at x = c.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Concavity on an interval
Words: f is concave up on aninterval a < z < b

Meaning: For every = c where a < ¢ < b, f is concave up at x = c.

f(x) ()

W 2

a b a b

f concave up on (a, b) f concave down on (a, b)
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5. Graphing and Optimization
5-2 Second Derivative and Graphs
Consider relationship between concavity of f and the behavior of f’

f(z)

m <0 m >0

m =0
e
f(z)
—— T
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

It seems that
f'increasing on interval @ < z < b <= f concave up onintervala < z < b

Similarly f’ decreasing on interval a < x < b <= f concave down oninterval a < =z < b
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

It seems that
f'increasing on interval @ < z < b <= f concave up onintervala < z < b

Similarly f’ decreasing on interval a < x < b <= f concave down oninterval a < =z < b
But remember that

A function g being increasing or decreasing on an interval a < = < b is related to the
derivative of g being positive or negative on the interval a < x < b.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

It seems that
f'increasing on interval @ < z < b <= f concave up onintervala < z < b

Similarly f’ decreasing on interval a < x < b <= f concave down oninterval a < =z < b

But remember that

A function g being increasing or decreasing on an interval a« < = < b is related to the
derivative of g being positive or negative on the interval a < x < b.

So f’ being increasing or decreasing on an interval a < x < b is related to the derivative
of f’ being positive or negative on the interval a < x < b.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

It seems that
f'increasing on interval @ < z < b <= f concave up onintervala < z < b

Similarly f’ decreasing on interval a < x < b <= f concave down oninterval a < =z < b

But remember that

A function g being increasing or decreasing on an interval a« < = < b is related to the
derivative of g being positive or negative on the interval a < x < b.

So f’ being increasing or decreasing on an interval a < x < b is related to the derivative
of f’ being positive or negative on the interval a < x < b.

This leads us to consider the derivative of f'.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

NOTATION
Introduce the second derivative of f
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

NOTATION

Introduce the second derivative of f

. d? d?
Symbol: " or f”(x) or “-L ory” or L4
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

NOTATION
Introduce the second derivative of f

. d? d?
Symbol: " or f”(x) or “-L ory” or L4

Words: The second derivative of f.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

NOTATION
Introduce the second derivative of f

Symbol: f” or f'(z) or 327/; ory” or ji—g
Words: The second derivative of f.

Meaning: The derivative of the derivative of f that is:

1@ =g (41@) = £ @)
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

NOTATION
Introduce the second derivative of f

Symbol: f” or f'(z) or 327/; ory” or ji—g
Words: The second derivative of f.

Meaning: The derivative of the derivative of f that is:

1@ =g (41@) = £ @)

EXAMPLE 1
For f(z) = —2* + 502 and f(x) = ze™° find f(x)
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Relationship between

Sign of " <= increasing/decreasing behavior of f' += Concavity behavior of f
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Relationship between

Sign of " <= increasing/decreasing behavior of f' += Concavity behavior of f

SUMMARY Concavity

For the interval (a,b)

[ (z) f'(z) Graph of y = f(x)
+ Increasing Concave up
— Decreasing Concave down
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Relationship between

Sign of " <= increasing/decreasing behavior of f' += Concavity behavior of f

SUMMARY Concavity
For the interval (a,b)
f"(@) f'(z) Graph of y = f(z)
+ Increasing Concave up
— Decreasing Concave down

EXAMPLE 2

Find the intervals where the graph of f(z) = 2z° — 3z* is concave up or concave down.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs
DEFINITION Inflection point
Inflection point on graph of f is

@ a point on the graph
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is
@ a point on the graph

@ where the concavity changes.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is
@ a point on the graph

@ where the concavity changes.

This means that if f(z) exists in a neighborhood of an inflection point, then it must
change sign at that point.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is
@ a point on the graph

@ where the concavity changes.

This means that if f(z) exists in a neighborhood of an inflection point, then it must

change sign at that point.

THEOREM Inflection point

If y = f(x) is continuous on (a, b) and has an inflection point at = = ¢, then either

f"(c) =0or f"(c) does not exist
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is
@ a point on the graph

@ where the concavity changes.

This means that if f(z) exists in a neighborhood of an inflection point, then it must
change sign at that point.

THEOREM Inflection point

If y = f(x) is continuous on (a, b) and has an inflection point at = = ¢, then either
f"(c) =0or f"(c) does not exist

The theorem means that an inflection point can occur only at critical value of f”. How-
ever, not every critical value produces an inflection point.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

DEFINITION Inflection point
Inflection point on graph of f is
@ a point on the graph

@ where the concavity changes.

This means that if f(z) exists in a neighborhood of an inflection point, then it must
change sign at that point.

THEOREM Inflection point

If y = f(x) is continuous on (a, b) and has an inflection point at = = ¢, then either
f"(c) =0or f"(c) does not exist

The theorem means that an inflection point can occur only at critical value of f”. How-
ever, not every critical value produces an inflection point.

EXAMPLE 3
Find the inflection point(s) of f(z) = 22° — 3z*. J
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Analytical Example
Questions: Given a function
Find intervals where function is increasing or decreasing.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Analytical Example
Questions: Given a function

Find intervals where function is increasing or decreasing.

Find z—values of local max and min
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Analytical Example
Questions: Given a function

Find intervals where function is increasing or decreasing.

Find z—values of local max and min

Find y—values of the local max and min
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Analytical Example
Questions: Given a function
Find intervals where function is increasing or decreasing.

Find z—values of local max and min
Find y—values of the local max and min

Find intervals where function is concave up or down
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Analytical Example
Questions: Given a function
Find intervals where function is increasing or decreasing.

Find z—values of local max and min
Find y—values of the local max and min
Find intervals where function is concave up or down

Find z—values of inflection points
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Analytical Example
Questions: Given a function
Find intervals where function is increasing or decreasing.

Find z—values of local max and min

Find y—values of the local max and min

Find intervals where function is concave up or down
Find z—values of inflection points

@A Find y—values of inflection points
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

Let f(x) = ze™ ", Answer questions 1-6.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

Let f(z) = ze~", Answer questions 1-6.

To determine increasing or decreasing behavior of f, we should study the sign of
f’. Sowe need f'(x). Here, we have f'(z) = (1 — z)e™".
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
Let f(z) = ze~", Answer questions 1-6.
To determine increasing or decreasing behavior of f, we should study the sign of
f’. Sowe need f'(x). Here, we have f'(z) = (1 — z)e™".
We need to make a sign chart for f/(x). Start by looking for z—values = = ¢ where

> ['(e) =0
> f/(c) DNE

(these are called partion numbers for f'(z))
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
Let f(z) = ze~", Answer questions 1-6.

To determine increasing or decreasing behavior of f, we should study the sign of
f’. Sowe need f'(x). Here, we have f'(z) = (1 — z)e™".
We need to make a sign chart for f/(x). Start by looking for z—values = = ¢ where
> /() =0
> f’(c) DNE
(these are called partion numbers for f'(z))
Are there any = = ¢ where f’(c) DNE?
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
Let f(z) = ze~", Answer questions 1-6.

To determine increasing or decreasing behavior of f, we should study the sign of
f’. Sowe need f'(x). Here, we have f'(z) = (1 — z)e™".
We need to make a sign chart for f/(x). Start by looking for z—values = = ¢ where
> /() =0
> f’(c) DNE
(these are called partion numbers for f'(z))
Are there any = = ¢ where f’(c) DNE?

/ —3
fix) = (1-=z) X e’
this is a poly, its domain is all x this is an exp fun, its domain is all x
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
Let f(z) = ze~", Answer questions 1-6.

To determine increasing or decreasing behavior of f, we should study the sign of
f’. Sowe need f'(x). Here, we have f'(z) = (1 — z)e™".
We need to make a sign chart for f/(x). Start by looking for z—values = = ¢ where
> f(e)=0
> f/(c) DNE
(these are called partion numbers for f'(z))
Are there any = = ¢ where f’(c) DNE?

/ —3
fix) = (1-=z) X e’
this is a poly, its domain is all x this is an exp fun, its domain is all x

Conculde: The domain of f” is all z. There are no x = ¢ where f’(c) DNE.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs
EXAMPLE 4
Are there any x—values where f'(c) = 0

v
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5. Graphing and Optimization

5-2 Second Derivative and Graphs
EXAMPLE 4
Are there any x—values where f'(c) = 0

0= 1- =
(1-—z) X e

= = 1 will cause this factor to become zero ~ ¢@"¥""9 ~ 0 50 no x-values will ever cause e =¥ = 0

Conclusion: the only z—value that will cause f'(z) = 0is z = 1.
Conclude: = = 1 is the only partition number for f'(x).

y
Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  33/89




5. Graphing and Optimization

5-2 Second Derivative and Graphs
EXAMPLE 4
Are there any x—values where f'(c) = 0

0= 1— i
(1-2x) X e

« = 1 will cause this factor to become zero ~ e®"¥*i9 > 0 s0 no x-values will ever cause e =% = 0

Conclusion: the only z—value that will cause f'(z) = 0is z = 1.
Conclude: = = 1 is the only partition number for f'(x).
Now make a sign chart for f'(z)

(=00,1) (1,00)
.
f'(@)
. ap
f(=) Increasing . _ | Deacreasing

f'(2) = (1 —2)e” : nes - pos = neg
£'(0) = (1 —0)e°: pos - pos = pos

y
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

Conclusion of question 1:
@ fisincreasing on interval (—oo, 1), because f’ is positive there.
@ fis decreasing on interval (1, c0), because f’ is negative there.

o
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

Conclusion of question 1:
@ fisincreasing on interval (—oo, 1), because f’ is positive there.
@ fis decreasing on interval (1, ), because f’ is negative there.

2 Local max at = = 1 because f changes from inc to dec (because f’ changes from

pos to neg) and because we know that x = 1 is a critical value of f.
That is

» z = 1is a partition number for f’
> f(1) exists because domain of f is all real numbers.
No local min!

v
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

Conclusion of question 1:
@ fisincreasing on interval (—oo, 1), because f’ is positive there.
@ fis decreasing on interval (1, ), because f’ is negative there.

2 Local max at = = 1 because f changes from inc to dec (because f’ changes from

pos to neg) and because we know that x = 1 is a critical value of f.
That is

» z = 1is a partition number for f’
> f(1) exists because domain of f is all real numbers.
No local min!

3 The y—value of the local max. Substitute = = 1 into f(z).

— — = =
y=fA)=1le =~

o
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

Conclusion of question 1:
@ fisincreasing on interval (—oo, 1), because f’ is positive there.
@ fis decreasing on interval (1, ), because f’ is negative there.

2 Local max at = = 1 because f changes from inc to dec (because f’ changes from

pos to neg) and because we know that = = 1 is a critical value of f.
That is

» z = 1is a partition number for f’
> f(1) exists because domain of f is all real numbers.
No local min!

3 The y—value of the local max. Substitute = = 1 into f(z).

_ _ =i 1
y=f(1)=1le =2

4 Strategy:
> find f”’
» analyze sign of f”’
» use the information about sign of f”/ to answer question about concavity of f.
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5. Graphing and Optimization
5-2 Second Derivative and Graphs
EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f'(z))
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5. Graphing and Optimization
5-2 Second Derivative and Graphs
EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f’(z)) Start by finding partition numbers for f”(x).
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f’(z)) Start by finding partition numbers for f”(x).
Are there any x—values = = ¢ such that
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f’(z)) Start by finding partition numbers for f”(x).
Are there any x—values = = ¢ such that

@ f”(c) DNE, or
® f"(c)=0
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f’(z)) Start by finding partition numbers for f”(x).
Are there any x—values = = ¢ such that
@ f”(c) DNE, or
o f"(c)=0
Observe
' (x) = (z—2) X e "

—— ~~
this is a poly, its domain is all x  this always exists for every x

So the product always exists for every z.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f’(z)) Start by finding partition numbers for f”(x).
Are there any x—values = = ¢ such that

@ f”(c) DNE, or
@ f(c)=0
Observe
f(z) = (x—2) X e’
this is a poly, its domain is all x  this always exists for every x

So the product always exists for every x. Are there any z—values where f”(c) = 0?
0= f"(z)
0= (x —2) X e "

~—
x = 2 will cause this factor to become zero  always pos because e@"¥t"im9 > o
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4

We need to analyze the sign of f”/(z) = (z — 2)e™ " (use approach similar to what we
did when we analyzed the sign of f’(z)) Start by finding partition numbers for f”(x).
Are there any x—values = = ¢ such that

@ f”(c) DNE, or
@ f(c)=0
Observe
' (x) = (z—2) X e "
this is a poly, its domain is all x  this always exists for every x

So the product always exists for every x. Are there any z—values where f”(c) = 0?
0= f"(z)
0= (x —2) X e "

x = 2 will cause this factor to become zero  always pos because e@"¥t"im9 > o

Conclusion: f’(z) has one partition number z = ¢ = 2.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
(—OO, 2) f// -0 (2700)
° az
!/
f'(z) Decreasing . _ o Increasing

(1) = (1 —2)e”" =neg - pos = neg
"(3) = (3 —2)e ® = pos - pos = pos
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
(—OO, 2) f” -0 (27 OO)
, o
f'(z) Decreasing . _ o Increasing
(1) = (1 —2)e " =neg - pos = neg
"(3) = (3 —2)e ® = pos - pos = pos
Conclusion:

@ fis concave up on the interval (2, o)

@ fis concave down on the interval (—oo, 2)
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
5 Find z—values of inflection points.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
5 Find z—values of inflection points.
@ We know the concavity changes at = = 2.

Fabien Navarro (SAMM) Master PIREH



5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
5 Find z—values of inflection points.
@ We know the concavity changes at = = 2.

@ We also know that f(2) exists because f(2) = 2¢~? this will exist.

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  37/89




5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
5 Find z—values of inflection points.
@ We know the concavity changes at = = 2.

@ We also know that f(2) exists because f(2) = 2¢~? this will exist.
So there is a point on graph of f at z = 2.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
5 Find z—values of inflection points.
@ We know the concavity changes at = = 2.

@ We also know that f(2) exists because f(2) = 2¢~? this will exist.

So there is a point on graph of f at x = 2. Conclude there is an inflection point on
graph of fatxz =2
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXAMPLE 4
5 Find z—values of inflection points.
@ We know the concavity changes at = = 2.

@ We also know that f(2) exists because f(2) = 2¢~? this will exist.

So there is a point on graph of f at x = 2. Conclude there is an inflection point on
graph of fatxz =2

6 The y—value of the inflection point is:
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Point of Diminishing Returns

If a company decides to increase spending on advertising, they would expect sales to
increase.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Point of Diminishing Returns

If a company decides to increase spending on advertising, they would expect sales to
increase.

At first, sales will increase at an increasing rate and then increase at a decreasing rate.
The value of x where the rate of change of sales changes from increasing to
decreasing is called the point of diminishing returns.
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Point of Diminishing Returns

If a company decides to increase spending on advertising, they would expect sales to
increase.

At first, sales will increase at an increasing rate and then increase at a decreasing rate.
The value of x where the rate of change of sales changes from increasing to
decreasing is called the point of diminishing returns.

This is also the point where the rate of change has a maximum value. Money spent
after this point may increase sales, but at a lower rate. The next example illustrates this
concept.

v
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Maximum Rate of Change Example

Currently, a discount appliance store is selling 200 large-screen television sets monthly.
If the store invests $x thousand in an advertising campaign, the ad company estimates
that sales will increase to

N(z) = 32> —0.252* +200, 0<z<9

@ When is rate of change of sales increasing and when is it decreasing?
@ What is the point of diminishing returns and the maximum rate of change of sales?
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

Maximum Rate of Change Example
The rate of change of sales with respect to advertising expenditures is
N'(z) = 92° — 2° = 2°(9 — )

To determine when N’(z) is increasing and decreasing, we find N (x), the derivative
of N'():
N"(z) = 18z — 32> = 32(6 — z)
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

N <- function(x) {3*x"3-0.25*x"4+200}

Np <- function(x) {9+x"2-x"3}; tgt <- function(x) {108xx-124}

curve (N, 0, 9,col="blue", ylim=c(0,750)); curve(Np,0,9,add=T)

segments (5,Np(6),7,Np(6)); segments(6,0,6,N(6), lty=2)

segments (5, tgt(5), 7, tagt(7))

points (6,Np(6), pch=16);points(6,N(6), pch=16)

legend ("topleft”, egend=c ("N(x)","N"(x)"),
col=c("blue","black"), lty=1)

— N
600 [ N'(x)

00 |

P4 !

200 |

0 '.—/./T/’—T—\.
0 2 4 6 8
X
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5. Graphing and Optimization

5-2 Second Derivative and Graphs

EXERCISES

1. Find the interval where the graph of f is concave up and concave down. Identify all
infection points of f(z).

a. f(z)=a® —32> + 2z -1
b. f(z) = oo
c. fl) = 55

2. A company estimates that it will sell N(z) units of a product after spending $x
thousand on advertising, as given by

N(z) = —0.25z" + 132® — 1802 + 10,000, 15 <z < 24

@ When is rate of change of sales increasing and when is it decreasing?
@ What is the point of diminishing returns and the maximum rate of change of sales?
@ Graph N and N’ on the same coordinate system
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5. Graphing and Optimization

Q 5-4 Curve Sketching Techniques
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

Learning Objectives
@ Use the graphing strategy to sketch the graphs of functions. J
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy
Step 1 Analyze f(z)

v
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5. Graphing and Optimization
5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.

v
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.

v
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.
Find asymptotes

v
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
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Find the domain of f.
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5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f/(z).
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5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f/(z).
Determine the intervals where f is increasing and decreasing.
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5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f'(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
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5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f'(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.

Step 3 Analyze f(x)
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5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(z)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f'(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for "' (z).
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5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(x)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f'(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for "' (z).
Construct a sign chart for " ().
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Step 1 Analyze f(x)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f'(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for f(z).
Construct a sign chart for " ().
Determine the intervals where f is concave up or down.
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Step 1 Analyze f(x)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f'(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for f(z).
Construct a sign chart for " ().
Determine the intervals where f is concave up or down.
Find inflection points.
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Step 1 Analyze f(x)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f/(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for f(z).
Construct a sign chart for " ().
Determine the intervals where f is concave up or down.
Find inflection points.

Step 4 Sketch the graph of f
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PROCEDURE Graphing Strategy

Step 1 Analyze f(x)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f/(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for f(z).
Construct a sign chart for " ().
Determine the intervals where f is concave up or down.
Find inflection points.
Step 4 Sketch the graph of f
Draw asymptotes, local max/min, and inflection points.
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

PROCEDURE Graphing Strategy

Step 1 Analyze f(x)
Find the domain of f.
Find the intercepts.
Find asymptotes
Step 2 Analyze f'(z)
Find the partition numbers and critical values of f'(z).
Construct a sign chart for f/(z).
Determine the intervals where f is increasing and decreasing.
Find local maxima and minima.
Step 3 Analyze f(x)
Find the partition numbers for f(z).
Construct a sign chart for " ().
Determine the intervals where f is concave up or down.
Find inflection points.
Step 4 Sketch the graph of f

Draw asymptotes, local max/min, and inflection points.
Plot additional points as needed and complete the sketch.
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1

Apply the graphing strategy to sketch the graph of f(z) = z* — 32°.
Step 1 Analyze f(z)
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1

Apply the graphing strategy to sketch the graph of f(z) = z* — 32°.
Step 1 Analyze f(z)

Domain: the domain of f is all z—values (poly).
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Apply the graphing strategy to sketch the graph of f(z) = z* — 32°.
Step 1 Analyze f(x)
Domain: the domain of f is all z—values (poly).
y intercept: if 2 = 0, then £(0) = 0® — 3(0%) = 0 is the y—intercept

x intercept: if y = 0, then 2® — 32 = 2%(z — 3) = 0sothatz =0
and = = 3 are the z—intercepts.
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Apply the graphing strategy to sketch the graph of f(z) = z* — 32°.
Step 1 Analyze f(x)
Domain: the domain of f is all z—values (poly).
y intercept: if 2 = 0, then £(0) = 0® — 3(0%) = 0 is the y—intercept

x intercept: if y = 0, then 2® — 32 = 2%(z — 3) = 0sothatz =0
and = = 3 are the z—intercepts.

There are no vertical or horizontal asymptotes since f is a
polynomial.
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5-4 Curve Sketching Techniques

EXAMPLE 1
Step 2 Analyze f'(x). f'(z) = 32% — 62 = 3x(x — 2)
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Step 2 Analyze f'(z). f'(z) = 32® — 62 = 3z(z — 2)

Critical values of f(z) : x =0 and x = 2.
Partition numbers for f(z) : =0 and z = 2.
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EXAMPLE 1
Step 2 Analyze f'(z). f'(z) = 32® — 62 = 3z(z — 2)

Critical values of f(z) : x =0 and x = 2.
Partition numbers for f(z) : =0 and z = 2.

Sign chart for f/(z):

(—O0,0) (072) (2700)
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5-4 Curve Sketching Techniques

EXAMPLE 1
Step 2 Analyze f'(z). f'(z) = 32® — 62 = 3z(z — 2)
Critical values of f(z) : x =0 and x = 2.
Partition numbers for f(z) : =0 and z = 2.
Sign chart for f/(z):
(—O0,0) (072) (2700)
Py TH T g T T gt A

s L
f(x) ) )

Inc ., —( Dec ,—9 Inc

f increases on (—o0,0) and (2, c0) and decreases on (0, 2).
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Step 2 Analyze f'(z). f'(z) = 32® — 62 = 3z(z — 2)
Critical values of f(z) : x =0 and x = 2.
Partition numbers for f(z) : =0 and z = 2.
Sign chart for f/(z):
(—O0,0) (072) (2700)
Py TH T g T T gt A

s L
f(x) ) )

Inc ., —( Dec ,—9 Inc

f increases on (—o0,0) and (2, c0) and decreases on (0, 2).

fhas alocalmaxatx =0,y = 0. f has alocal min at z = 2,
y=—4
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5-4 Curve Sketching Techniques

EXAMPLE 1
Step 3 Analyze f”(z). f""(z) = 6x — 6 =6(z — 1)
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Step 3 Analyze f”(z). f""(z) = 6x — 6 =6(z — 1)

Partition numbers for f'(z) : z = 1.
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Step 3 Analyze f"(x). f"’(z) =6z — 6 =6(z — 1)
Partition numbers for f'(z) : z = 1.
Sign chart for f”(z):

(_0071) (1700)

7f//:
() + + 4+ + ++

f'(@)

[ ]
8

Decreasing . _ 1 Increasing
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EXAMPLE 1
Step 3 Analyze f"(x). f"’(z) =6z — 6 =6(z — 1)
Partition numbers for f'(z) : z = 1.
Sign chart for f”(z):

(_0071) (1700)

7f//:
() + + 4+ + ++

f'(@)

[ ]
8

Decreasing . _ 1 Increasing

fison (—oo0,1); fislJon (1,00).
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 1
Step 3 Analyze f"(x). f"’(z) =6z — 6 =6(z — 1)
Partition numbers for f'(z) : z = 1.
Sign chart for f”(z):

(_0071) (1700)

7f//:
() + + 4+ + ++

f'(@)

[ ]
8

Decreasing . _ 1 Increasing

fison (—oo0,1); fislJon (1,00).
f has an inflection pointat z = 1, y = —2
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5. Graphing and Optimization
5-4 Curve Sketching Techniques
EXAMPLE 1

Step 4 Sketch the graph of f

20 f(x) =3 — 3z?
10 f
x
4 P \2/' 1
10 |
—20
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2
If 2 items are produced in one day, the cost per day is
C(z) = = + 2z + 2000

and the average cost per unitis C(z)/x.
Use the graphing strategy to analyze the average cost function.
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EXAMPLE 2
If 2 items are produced in one day, the cost per day is
C(z) = = + 2z + 2000

and the average cost per unitis C(z)/x.
Use the graphing strategy to analyze the average cost function.

Step 1 Analyze C(z) = <) — 2242242000
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5-4 Curve Sketching Techniques

EXAMPLE 2

If 2 items are produced in one day, the cost per day is
C(z) = = + 2z + 2000

and the average cost per unitis C(z)/x.

Use the graphing strategy to analyze the average cost function.
Step 1 Analyze C(z) = <) — 2242242000

]

Domain: Since negative values of = do not make sense and C(0)
is not defined, the domain is the set of positive real numbers.
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EXAMPLE 2

If 2 items are produced in one day, the cost per day is
C(z) = = + 2z + 2000

and the average cost per unitis C(z)/x.

Use the graphing strategy to analyze the average cost function.
Step 1 Analyze C(z) = <) — 2242242000

]

Domain: Since negative values of = do not make sense and C(0)
is not defined, the domain is the set of positive real numbers.

y intercept: None
x intercept: None
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2
If 2 items are produced in one day, the cost per day is

C(z) = = + 2z + 2000

and the average cost per unitis C(z)/x.

Use the graphing strategy to analyze the average cost function.

Step 1 Analyze C(z) = <) — 2242242000

]

Domain: Since negative values of = do not make sense and C(0)
is not defined, the domain is the set of positive real numbers.

y intercept: None
x intercept: None

H.A.: None

V.A.: The line z = 0 is a vertical asymptote (C'(0) # 0).
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2

Oblique Asymptotes: If a graph approaches a line that is neither horizontal nor
vertical as = approaches co or —oo, that line is called an oblique asymptote

2
. C(z) _ 2® +20+2000 _ 2000

x T
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2

Oblique Asymptotes: If a graph approaches a line that is neither horizontal nor
vertical as = approaches co or —oo, that line is called an oblique asymptote

2
. C(z) _ 2® +20+2000 _ 2000
X

x T

If 2 is a large positive number, then 2000/ is very small and the graph of C(x)
approaches the line y = = + 2.
This is the oblique asymptote.
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5. Graphing and Optimization

5-4 Curve Sketching Techniques
EXAMPLE 2

Step 2 Analyze C'(x).

O (@) = (2z + 2)x — (z* + 2z + 2000)(1) _ x” —2000

aZ 2

v
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5. Graphing and Optimization

5-4 Curve Sketching Techniques
EXAMPLE 2

Step 2 Analyze C'(x).

O () = (2z 4+ 2)x — (z* 4 2z + 2000)(1) _ @~ —2000

T2 2

Critical values of C'(z) : 2 = v/2000 ~ 44.72.
Partition numbers for C’(z) : = +/2000 and z = 0.

o
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5. Graphing and Optimization

5-4 Curve Sketching Techniques
EXAMPLE 2

Step 2 Analyze C'(x).

O (@) = (2z 4+ 2)x — (z* 4 2z + 2000)(1) _ @~ —2000

T2 2

Critical values of C'(z) : 2 = v/2000 ~ 44.72.
Partition numbers for C’(z) : = +/2000 and z = 0.

Sign chart for C'(x):

(0,44.72) (44.72, 0)
Clz) — - T T~ 0+ F oA A A
_ . %
C(z) Decreasing Increasing
x = 44.72
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5. Graphing and Optimization

5-4 Curve Sketching Techniques
EXAMPLE 2

Step 2 Analyze C'(x).

O () = (2z + 2)x — (z* + 2z + 2000)(1) _ x” —2000

T2 2

Critical values of C'(z) : 2 = v/2000 ~ 44.72.
Partition numbers for C’(z) : = +/2000 and z = 0.

Sign chart for C'(x):

(0,44.72) (44.72, 0)
C'w) ~~ ~ 7 T T o + + + + + +
_ ° %
C(z) Decreasing Increasing
x =44.72

If we test values to the left and right of the critical point, we find
that C'is decreasing on (0, v/2000), and increasing on (1/2000, co)
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5. Graphing and Optimization

5-4 Curve Sketching Techniques
EXAMPLE 2
Step 2 Analyze C'(x).

O () = (2z + 2)x — (z* + 2z + 2000)(1) _ x” —2000

T2 2

Critical values of C'(z) : 2 = v/2000 ~ 44.72.
Partition numbers for C’(z) : = +/2000 and z = 0.

Sign chart for C'(x):

(0,44.72) (44.72, 0)
C'w) ~~ ~ 7 T T o + + + + + +
_ * %
C(z) Decreasing Increasing
x =44.72

If we test values to the left and right of the critical point, we find
that C'is decreasing on (0, v/2000), and increasing on (1/2000, co)

C has a local min at z = v/2000, y = 91.44

v
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2
Step 3 Analyze C”'(x).

2z(z%) — (z° — 2000)(2z) _ 4000
zt g3

O// (CC) —
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2
Step 3 Analyze C”(z).

C// (,CC) —

Since this is positive for all positive x, the graph of the average cost
function is concave up on (0, co)

2z(z?) — (x? — 2000)(2x) _ 4000

i 3
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Master PIREH
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXAMPLE 2

Step 4 Sketch the graph of C.
2500
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C(z)
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5. Graphing and Optimization

5-4 Curve Sketching Techniques

EXERCISES

1. Summarize the pertinent information obtained by applying the graphing strategy and
sketch the graph of y = f(z).

22
a. f(z) =77
2* T
b. f(z) = 2=
2. Nicole owns a company that makes luxurious velvet robes. Her total cost to make x
robes can be modeled by the function

C(x) = 1500 + 3z°, = > 0.

a. Find the average cost function.

b. How many robes must be produced for the average cost to be minimized?
c. What is the minimum average cost?
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

Learning Objectives

@ Find the absolute maxima and absolute minima of functions.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

Learning Objectives
@ Find the absolute maxima and absolute minima of functions.
@ Use the second derivative test for local extrema.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
@ f(c) is an absolute maximum of f if f(c) > f(x) for all z in the domain of f.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
@ f(c) is an absolute maximum of f if f(c) > f(x) for all z in the domain of f.

@ f(c) is an absolute minium of fif f(c) < f(z) for all z in the domain of f.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
@ f(c) is an absolute maximum of f if f(c) > f(x) for all z in the domain of f.

@ f(c) is an absolute minium of fif f(c) < f(z) for all z in the domain of f.

THEOREM 1

If a function f is continuous on closed interval [a, b], then f is guaranteed to have an
absolute max and an absolute min on that interval.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

DEFINITION: Absolute Maxima and Minima
@ f(c) is an absolute maximum of f if f(c) > f(x) for all z in the domain of f.

@ f(c) is an absolute minium of fif f(c) < f(z) for all z in the domain of f.

THEOREM 1

If a function f is continuous on closed interval [a, b], then f is guaranteed to have an
absolute max and an absolute min on that interval.

THEOREM 2

The only place where an abs max or min can ever occur (if they occur at all) is at the
z—values that are

@ critical values
@ endpoints of the domain

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  58/89



5. Graphing and Optimization

5-5 Absolute Maxima and Minima

Suppose that the domain of a function f is a closed interval [a, b].
and suppose that it is known that f is continuous on [a, b].

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  59/89



5. Graphing and Optimization

5-5 Absolute Maxima and Minima

Suppose that the domain of a function f is a closed interval [a, b].
and suppose that it is known that f is continuous on [a, b].

Theorem 1 guarantees that there will be both an absolute maximum and an absolute
minimum on the interval [a, b].
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

Suppose that the domain of a function f is a closed interval [a, b].
and suppose that it is known that f is continuous on [a, b].

Theorem 1 guarantees that there will be both an absolute maximum and an absolute
minimum on the interval [a, b].

and Theorem 2 tells us where (at what x—values) the absolute max and min have to be
found.

@ at x values that are critical values of f

@ at x values that are endpoints (z = a,x = b).
This give us the idea for a strategy:
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval

Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval

Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].

Step 2 Confirm that f is indeed continuous on the interval [a, b].
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval

Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].
Step 2 Confirm that f is indeed continuous on the interval [a, b].

Step 3 Find the critical values of f.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval

Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].
Step 2 Confirm that f is indeed continuous on the interval [a, b].
Step 3 Find the critical values of f.

Step 4 List all important z—values in order in a table.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval

Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].

Step 2 Confirm that f is indeed continuous on the interval [a, b].
Step 3 Find the critical values of f.

Step 4 List all important z—values in order in a table.

Step 5 Find the correspond y—values.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

PROCEDURE Finding Absolute Extrema on a Closed Interval

Used for finding the absolute extrema for a function f that is continuous on a closed
interval [a, b].

Step 1 Identify the closed interval [a, b].

Step 2 Confirm that f is indeed continuous on the interval [a, b].
Step 3 Find the critical values of f.

Step 4 List all important z—values in order in a table.

Step 5 Find the correspond y—values.

Step 6 Identify the largest y—value as the abs max and the smallest y—value
as the absolute min. State your conclusion clearly
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1

Find the absolute extrema of f(z) = 2* — 62 + 5 on the interval [—3, 2].

v
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima
EXAMPLE 1
Find the absolute extrema of f(z) = 2* — 62 + 5 on the interval [—3, 2].

Step 1 The interval [—3, 2] is a closed interval.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1
Find the absolute extrema of f(z) = 2* — 62 + 5 on the interval [—3, 2].

Step 1 The interval [—3, 2] is a closed interval.

Step 2 The function f is continuous on [—3, 2] because f is a polynomial
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima
EXAMPLE 1
Find the absolute extrema of f(x) = 2* — 62 + 5 on the interval [-3, 2].
Step 1 The interval [—3, 2] is a closed interval.
Step 2 The function f is continuous on [—3, 2] because f is a polynomial

Step 3 Critical values of f:
Start by finding f/(z) = 42® — 12z.
Are there any z—values that cause f’(x) to not exist?
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1

Find the absolute extrema of f(x) = 2* — 62 + 5 on the interval [-3, 2].
Step 1 The interval [—3, 2] is a closed interval.

Step 2 The function f is continuous on [—3, 2] because f is a polynomial

Step 3 Critical values of f:
Start by finding f'(z) = 42° — 12a.
Are there any z—values that cause f’(z) to not exist? f'(x) is a
polynomial so f'(x) exists for all z.
Are there any z—values that cause f'(z) = 0?
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1

Find the absolute extrema of f(z) = 2* — 62 + 5 on the interval [—3, 2].

Step 1 The interval [—3, 2] is a closed interval.

Step 2 The function f is continuous on [—3, 2] because f is a polynomial

Step 3 Critical values of f:

Start by finding f'(z) = 42° — 12a.
Are there any z—values that cause f’(z) to not exist? f'(x) is a
polynomial so f'(x) exists for all z.
Are there any z—values that cause f'(z) = 0?Set f'(z) = 0 and solve
for x.

4a® — 122 =0

Identify common factor 4z and rewrite to highlight the common factor.
dz-2> —4z-3=0

Now factor out the 4z: 42(2* — 3) =0
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1
Step 3 Factor some more

4z(z —V3)(z+V3) =0

Solution: = = 0,z = —/3, z = /3 these are the partition numbers for
f'(z) because they cause f'(x) = 0.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1
Step 3 Factor some more
4a(x — V3)(z+V3) =0
Solution: = = 0,z = —/3, z = /3 these are the partition numbers for
f'(z) because they cause f'(x) = 0.
Observe that f(x) exists at all three of these partition numbers for f’
(because f is a poly, so its domain is all real numbers).
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1
Step 3 Factor some more
4z(z —V3)(z 4+ v3) =0

Solution: = = 0,z = —/3, z = /3 these are the partition numbers for
f'(z) because they cause f'(x) = 0.
Observe that f(x) exists at all three of these partition numbers for f’
(because f is a poly, so its domain is all real numbers).
So the three z—values z = 0,z = —/3, z = /3 all satisfy

° f'(x)=0

@ f(z) exists
So these three z—values are the critical values for f.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1

Step 4-6 List of important © — values
Important z—values | Corresponding y—values

7 = = y =32
r=—v3 y=—4
=0 y=>5
z =43 y=—4
w=2 Y= —
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 1
Step 4-6 List of important © — values
Important z—values | Corresponding y—values
B = =3 y = 32
z=—vV3 y=—4
=0 Yy=>5
% — /3 y=—4
B =2 Y= —
Conclusion:
@ The absolute max is y = 32 and it occurs at x = —3
@ The absolute minis y = —4 and it occurs at z = —v/3 and = = /3 )
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 2

Find the absolute extrema of f(x) = 2* — 62 + 5 on the interval [—1, 2].
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 2

Find the absolute extrema of f(z) = 2* — 62 + 5 on the interval [—1, 2].

Step 1 The interval [—1, 2] is a closed interval.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 2

Find the absolute extrema of f(x) = 2* — 62 + 5 on the interval [—1, 2].
Step 1 The interval [—1, 2] is a closed interval.

Step 2 The function f is continuous on [—1, 2] because f is a polynomial
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 2

Find the absolute extrema of f(z) = z* — 62 + 5 on the interval [—1, 2].
Step 1 The interval [—1, 2] is a closed interval.
Step 2 The function f is continuous on [—1, 2] because f is a polynomial

Step 3 Critical values of f:
z=0andz =3

z==+/3 not in the interval [1, 2]
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 2

Step 4-6 List of important © — values
Important z—values | Corresponding y—values

==l y=20
= Yy=>5
x:ﬁ y=—4
=7 y=-—3
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 2

Step 4-6 List of important © — values
Important z—values

Corresponding y—values

7= =l y=0

= Yy=>5

z =13 y=—4

=7 y=-—3
Conclusion:

@ The absolute maxis y = 5 and it occurs at z = 0
@ The absolute minis y = —4 and it occurs at z = v/3
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima
EXAMPLE 3

Find the absolute extrema of f(x) = z* — 6z + 5 on the interval (—oo, o0).

v
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

Find the absolute extrema of f(z) = 2* — 62> + 5 on the interval (—oo, c0).

Observe f is continuous but the interval is not closed. We are not guaranteed any max
or min.

We cannot use the closed interval procedure!

So what do we do?

v

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  66/89



5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

Find the absolute extrema of f(x) = z* — 62> + 5 on the interval (—oo, 00).

Observe f is continuous but the interval is not closed. We are not guaranteed any max
or min.

We cannot use the closed interval procedure!
So what do we do?
A variety of math technique have to be used, depending on the problem.

v
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

Find the absolute extrema of f(x) = z* — 62> + 5 on the interval (—oo, 00).

Observe f is continuous but the interval is not closed. We are not guaranteed any max
or min.

We cannot use the closed interval procedure!

So what do we do?

A variety of math technique have to be used, depending on the problem.

Observe f is even degree polynomial with positive leading coefficient. So both ends go
up.

10

So graph will have absolute min, but will not have an absolute max.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

THEOREM 1 tells us that the only places where abs max or min can occur at
@ critical values
@ endpoints
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

THEOREM 1 tells us that the only places where abs max or min can occur at
@ critical values
@ endpoints

We don'’t have any endpoints in this example, so the abs max or min must occur at
critical values.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

THEOREM 1 tells us that the only places where abs max or min can occur at
@ critical values
@ endpoints

We don'’t have any endpoints in this example, so the abs max or min must occur at
critical values.
From previous example, we know that the critical values of f are:

z=0,z=—3,z=+/3.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 3

THEOREM 1 tells us that the only places where abs max or min can occur at
@ critical values
@ endpoints
We don'’t have any endpoints in this example, so the abs max or min must occur at

critical values.

From previous example, we know that the critical values of f are:
z=0,z=—3,z=+/3.

So it must be that y = —4 is the abs min (it occurs at = = —/3 and = = /3). No abs
max!
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

Second-Derivative Test
Let ¢ be a critical value of f(z).

7(e) [ J7(c) | Graphof [is 7
0 + Concave up Local min
0 — Concave do,wn | Local max
0 0 Concave up Test fails
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 4

Find the local maximum and minimum values of f(z) = x* — 62> on [—1,7].

Fabien Navarro (SAMM) Master PIREH



5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 4

Find the local maximum and minimum values of f(z) = z* — 62 on [~1,7].

f(x) = 32 — 12z = 3z(z — 4)
f(z) =6z — 12 = 6(z — 2)

Critical values: z =0and z = 4

1" (0) = —12, hencef(0) local max
1" (4) = 12, hencef(4) local min
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

THEOREM 3: Second-Derivative Test for Absolute Extremum
Let f be continuous on interval I with only one critical value cin 1.
o If f'(c) =0and f"(c) > 0, then f(c) is the absolute minimum of f on 1.

o If f'(c) =0and f"(c) < 0, then f(c) is the absolute maximum of f on I.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

THEOREM 3: Second-Derivative Test for Absolute Extremum
Let f be continuous on interval I with only one critical value cin 1.
o If f'(c) =0and f"(c) > 0, then f(c) is the absolute minimum of f on 1.

o If f'(c) =0and f"(c) < 0, then f(c) is the absolute maximum of f on I.

The second-derivative test does not apply if f”(c) = 0 orif f”(c) is not defined. The
first-derivative test must be used.
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 5

Find the absolute minimum value of f(z) =z + 2 on (0, o).
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXAMPLE 5
Find the absolute minimum value of f(z) =z + 2 on (0, o).
2
f’(m):lfi _z -4 (z-2)(x+2)

2 a2 72

The only critical value in the interval (0, 00) is = = 2. Since f/(2) =1 > 0, f(2) is the
abs min value of f on (0, c0)
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5. Graphing and Optimization

5-5 Absolute Maxima and Minima

EXERCISES
1. Use the second derivative test to find the local extrema for f(z) = 22° — 42® — 10
2. Let f(z) = 20 — 42z — 252. Find all absolute extrema on the interval (0, co)

3. Find the absolute maxima and absolute minima, if they exist, for the function
f(x) = & — 2® + 4 on the given intervals.

a. [—4,0]
b. [—4,3]
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5. Graphing and Optimization

e 5-6 Optimization
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5. Graphing and Optimization

5-6 Optimization

Learning Objectives
@ Solve applications requiring optimization of area or perimeter.
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5. Graphing and Optimization

5-6 Optimization

Learning Objectives
@ Solve applications requiring optimization of area or perimeter.
@ Solve applications requiring optimization of revenue, profit, or cost.
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5. Graphing and Optimization

5-6 Optimization

Learning Objectives
@ Solve applications requiring optimization of area or perimeter.
@ Solve applications requiring optimization of revenue, profit, or cost.
@ Solve inventory control applications.
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5. Graphing and Optimization

5-6 Optimization

Optimization involves absolute extremum problems.

Possible Complications:
@ problems may be word problems.
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5. Graphing and Optimization

5-6 Optimization

Optimization involves absolute extremum problems.

Possible Complications:
@ problems may be word problems.

@ domain might not be closed intervals.
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5. Graphing and Optimization

5-6 Optimization

Optimization involves absolute extremum problems.

Possible Complications:
@ problems may be word problems.

@ domain might not be closed intervals.

@ domain might not even be specified (you will have to figure it out).
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5. Graphing and Optimization

5-6 Optimization

Optimization involves absolute extremum problems.

Possible Complications:
@ problems may be word problems.

@ domain might not be closed intervals.
@ domain might not even be specified (you will have to figure it out).

@ problems might involve more than one variable.
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5. Graphing and Optimization

5-6 Optimization

Optimization involves absolute extremum problems.

Possible Complications:
@ problems may be word problems.

@ domain might not be closed intervals.
@ domain might not even be specified (you will have to figure it out).

@ problems might involve more than one variable.
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5. Graphing and Optimization

5-6 Optimization

Optimization involves absolute extremum problems.

Possible Complications:
@ problems may be word problems.

@ domain might not be closed intervals.
@ domain might not even be specified (you will have to figure it out).

@ problems might involve more than one variable.

v

The techniques used to solve optimization problems are best illustrated through exam-
ples. Let’'s begin with some examples.
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 1

Find two positive numbers z, y such that
@ the product of the numbers is 9000.

@ the sum 10z + 25y is minimized.

v

Fabien Navarro (SAMM) Master PIREH P1 Panthéon-Sorbonne, 2024-2025  76/89



5. Graphing and Optimization

5-6 Optimization
EXAMPLE 1

Find two positive numbers z, y such that
@ the product of the numbers is 9000.

@ the sum 10z + 25y is minimized.
Two equations:
Eq I: zy = 9000
Eq ll: 10x + 25y = S (minimize this Sum)

v
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 1

Find two positive numbers z, y such that
@ the product of the numbers is 9000.

@ the sum 10z + 25y is minimized.

Two equations:
Eq I: zy = 9000
Eq ll: 10x + 25y = S (minimize this Sum)

Eliminate one of the variables:
Solve equation | for y: y = 2000

v
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 1

Find two positive numbers z, y such that
@ the product of the numbers is 9000.

@ the sum 10z + 25y is minimized.

Two equations:

Eq I: zy = 9000

Eq ll: 10x + 25y = S (minimize this Sum)
Eliminate one of the variables:
Solve equation | for y: y = 2000

Substitute into equation II: 10z + 252°% = §
This describes a function S of the variable . In function notation

S(z) =10z + 259(;ﬂ
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 1

Find two positive numbers z, y such that
@ the product of the numbers is 9000.

@ the sum 10z + 25y is minimized.

Two equations:

Eq I: zy = 9000

Eq ll: 10x + 25y = S (minimize this Sum)
Eliminate one of the variables:
Solve equation | for y: y = 2000

Substitute into equation II: 10z + 252°% = §
This describes a function S of the variable . In function notation

S(z) =10z + 2592&

The domain is (0, o) because = must be positive.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 1

Find two positive numbers z, y such that
@ the product of the numbers is 9000.

@ the sum 10z + 25y is minimized.

Two equations:

Eq I: zy = 9000

Eq ll: 10x + 25y = S (minimize this Sum)
Eliminate one of the variables:
Solve equation | for y: y = 2000

Substitute into equation II: 10z + 252°% = §
This describes a function S of the variable . In function notation

S(z) =10z + 259(;ﬂ

The domain is (0, o) because = must be positive.
Goal: Find absolute min of S(z) on the interval (0, co) .
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 1

If there are any abs extrema, we know that they can only occur at x—values that are
critical value of S(z). So we must find them.
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5. Graphing and Optimization
5-6 Optimization
EXAMPLE 1

If there are any abs extrema, we know that they can only occur at x—values that are
critical value of S(z). So we must find them.

Start by finding partition numbers of S’(x) that is x—values where S’ = 0 or S’ DNE.

S(z) = 10z +25°00° = 10z + 25(9000)z "
S'(z) = % (10z + 25(9000)2 ")

=10 + 25(9000)(—1)z >

_ 19 250000)
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5. Graphing and Optimization
5-6 Optimization
EXAMPLE 1

If there are any abs extrema, we know that they can only occur at x—values that are
critical value of S(z). So we must find them.

Start by finding partition numbers of S’(x) that is x—values where S’ = 0 or S’ DNE.

S(z) = 10z +25°00° = 10z + 25(9000)z "
S'(z) = % (10 + 25(9000)z ")

=10 + 25(9000)(—1)z >

_ 19 250000)

Any z—values that cause S’ to be undefined?
Yes: z = 0, but it is not in our interval (0, co)
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5. Graphing and Optimization
5-6 Optimization
EXAMPLE 1

If there are any abs extrema, we know that they can only occur at x—values that are
critical value of S(z). So we must find them.

Start by finding partition numbers of S’(x) that is x—values where S’ = 0 or S’ DNE.

S(z) = 10z +25°00° = 10z + 25(9000)z "
S'(z) = % (10 + 25(9000)z ")

=10 + 25(9000)(—1)z >

_ 19 250000)

Any z—values that cause S’ to be undefined?
Yes: z = 0, but it is not in our interval (0, co)

Are there any z—values that cause S’(z) = 0?
Set S’(z) = 0 and solve for x.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 1
0 25(9(2)00) 0
x
10— 25(9200)
x

10z* = 25(9000)
z% = 25(900)
x = 1/25(900) = v/25v/900

=5-30=150

So z = 150 is a partition number for S’ because S’(150) = 0.

v
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5-6 Optimization

EXAMPLE 1
0 25(9(2)00) 0
x
10— 25(9200)
x

10z* = 25(9000)
z% = 25(900)
x = 1/25(900) = v/25v/900

=5-30 = 150

So z = 150 is a partition number for S’ because S’(150) = 0.

Is © = 150 a critical value for S?

Does S(150) exists?

S(150) = 10(150) + 22829 this exists!

So z = 150 is a partition number for S’(z) has property that S(150) exists.

So = = 150 is a critical value for S. This must be the place where the min occurs.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 1
Study sign of S’(z).
(0,150) (150, 00)
S@) ~T " 9++++++x
5(z) Decreasing _ OIncreasing

So x = 150 is the location of the absolute min.
We still need to find y. Must satisfy

zy = 9000
19000
a xT
9000
= —— =160
150
(z,y) = (150, 60)
Fabien Navarro (SAMM)
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 2

Find the dimensions of a rectangular area of 225 square meters that has the least
perimeter.
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 2

Find the dimensions of a rectangular area of 225 square meters that has the least
perimeter.

Let L = lenght, W = width.

The formulas for area A and perimeter P are
A=L-W =225
P =2L+2W
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5. Graphing and Optimization
5-6 Optimization
EXAMPLE 2

Find the dimensions of a rectangular area of 225 square meters that has the least
perimeter.

Let L = lenght, W = width.

The formulas for area A and perimeter P are
A=L-W =225
P =2L+2W

From the area equation solve for L and substitute that value of L into the perimeter
equation to get an equation in one unknown:

225
L==2
W
225 450
P=222 oW =2 4 ow
W w

v
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 2

Find the dimensions of a rectangular area of 225 square meters that has the least
perimeter.

Let L = lenght, W = width.

The formulas for area A and perimeter P are
A=L-W =225
P =2L+2W

From the area equation solve for L and substitute that value of L into the perimeter
equation to get an equation in one unknown:

225
L==2
W
225 450
P=222 oW =2 4 ow
W w

We wish to minimize P(W), so we take the derivative and look at the critical values.

v
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 2
oy = 4 (450 _ 450
P(W)de<W —|—2W) =3z +2
_2W? —450  2(W?—225)  2(W —15)(W + 15)
w2 w2 B w2

There is a critical value at W = 15. (Disregard W = “15 since the width cannot be
negative).
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 2
, _d (450 _ —450
P(W)de<W +2W) =3z +2
2W2 — 450  2(W? —225) 2(W — 15)(W + 15)

There is a critical value at W = 15. (Disregard W = “15 since the width cannot be
negative).

900

= 35

P"(15) > 0, so this is a local minimum and since W = 15 is the only critical value, then
P(15) = 452 4+ 2. 15 = $60 must be the absolute minimum value of P(W). The least
perimeter occurs when W = 15.

For this value L = 22> = 15, so the shape is a square of side 15 meters, with minimum
perimeter of 60.

PN (W)
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5. Graphing and Optimization

5-6 Optimization

PROCEDURE Strategy for Solving Optimization Problems

Step 1 Introduce variables, look for relationships among these variables, and
construct a math model of the form: Maximize (minimize) f(z) on the
interval I.
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5. Graphing and Optimization

5-6 Optimization

PROCEDURE Strategy for Solving Optimization Problems
Step 1 Introduce variables, look for relationships among these variables, and
construct a math model of the form: Maximize (minimize) f(z) on the
interval I.

Step 2 Find the critical values of f(x).
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5. Graphing and Optimization

5-6 Optimization

PROCEDURE Strategy for Solving Optimization Problems
Step 1 Introduce variables, look for relationships among these variables, and
construct a math model of the form: Maximize (minimize) f(z) on the
interval I.

Step 2 Find the critical values of f(x).

Step 3 Find the maximum (minimum) value of f(x) on the interval I.
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5. Graphing and Optimization

5-6 Optimization

PROCEDURE Strategy for Solving Optimization Problems

Step 1 Introduce variables, look for relationships among these variables, and
construct a math model of the form: Maximize (minimize) f(z) on the
interval I.

Step 2 Find the critical values of f(x).
Step 3 Find the maximum (minimum) value of f(x) on the interval I.

Step 4 Use the solution to the mathematical model to answer all the questions
asked in the problem.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 3

A company manufactures and sells z television sets per month. The monthly cost and
price-demand equations are:

C(z) = 60,000 + 60z
p(z) = 200°z/50,  for 0 <z < 6,000

a Find the production level that will maximize the revenue, the maximum revenue,
and the price that the company needs to charge at that level.

b Find the production level that will maximize the profit, the maximum profit, and the
price that the company needs to charge at that level.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 3
a The monthly revenue is
2

v x
R(z) = ap(x) = 2(200"x/50) = 200z — =
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 3
a The monthly revenue is
2
R(z) = zp(z) = 2(200°z/50) = 200z — E—O
The mathematical model for this problem is

272

Maximize R(x) = 200z — 50 0 <z <6,000
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 3
a The monthly revenue is
2

R(z) = xp(x) = £(200”x/50) = 200z — ET)

The mathematical model for this problem is

272

Maximize R(x) = 200z — 50 0 <z <6,000

Differentiate and set to zero:

’ . _iz
R'(z) = 200 % 0

x = 5000
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 3
a Use the second-derivative test for absolute extrema:

R'(z) = f% <0, forallz

Since z = 5000 is the only critical value and R"(x) < 0,
Max R(x) = R(5000) = $500, 000
When the demand is = = 5000, the price is

p(5000) = $100
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 3
a Use the second-derivative test for absolute extrema:

R'(z) = f% <0, forallz

Since z = 5000 is the only critical value and R"(x) < 0,
Max R(x) = R(5000) = $500, 000
When the demand is = = 5000, the price is

p(5000) = $100

b Profit = Revenue” Cost

2 2
P(z) = 200z — =— — (60000 + 60z) = — = + 140z — 60000
50 50
) = —= =
P'(z) = 55 +140=0
= 3500
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 3

Use the second-derivative test for absolute extrema:
TP
P'(z) = 9% <0, forallz
Since z = 3500 is the only critical value and P"(x) < 0,
Max P(z) = P(3500) = $185,000
When the demand is = = 3500, the price is

p(3500) = $130
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 3
Use the second-derivative test for absolute extrema:

) = —% <0, forallz
Since z = 3500 is the only critical value and P"(x) < 0,
Max P(z) = P(3500) = $185, 000
When the demand is = = 3500, the price is

p(3500) = $130

Summary:

The maximum revenue of $500, 000 is achieved at a production level of 5000 sets per
month, which are sold at $100 each. (The profit is P(5000) = $140, 000.)

The maximum profit of $185, 000 is achieved at a production level of 3500 sets per
month, which are sold at $130 each. (The revenue is R(3500) = $455, 000).
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 4: Inventory Control
A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It
costs $5 per year for a storage place for one bottle, and $40 to place an order.

How many times during the year should the pharmacy order the antibiotic in order to
minimize total cost?
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 4: Inventory Control

A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It
costs $5 per year for a storage place for one bottle, and $40 to place an order.

How many times during the year should the pharmacy order the antibiotic in order to
minimize total cost?

Example: If you use 4 orders of 50 bottles each, you need 50 storage places. If you
use 10 orders of 20 bottles each, you only need 20 storage places, but it costs more to
order.
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5-6 Optimization

EXAMPLE 4: Inventory Control
A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It
costs $5 per year for a storage place for one bottle, and $40 to place an order.

How many times during the year should the pharmacy order the antibiotic in order to
minimize total cost?

Example: If you use 4 orders of 50 bottles each, you need 50 storage places. If you
use 10 orders of 20 bottles each, you only need 20 storage places, but it costs more to
order.

Les = = number of bottles per order, and y = number of orders.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 4: Inventory Control

A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It
costs $5 per year for a storage place for one bottle, and $40 to place an order.

How many times during the year should the pharmacy order the antibiotic in order to
minimize total cost?

Example: If you use 4 orders of 50 bottles each, you need 50 storage places. If you
use 10 orders of 20 bottles each, you only need 20 storage places, but it costs more to
order.

Les = = number of bottles per order, and y = number of orders.

The total annual cost is C' = 40y + 5.

In order to write the total cost C' as a function of one variable, we must find a
relationship between x and y.
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5. Graphing and Optimization

5-6 Optimization

EXAMPLE 4: Inventory Control

A pharmacy has a uniform annual demand for 200 bottles of a certain antibiotic. It
costs $5 per year for a storage place for one bottle, and $40 to place an order.

How many times during the year should the pharmacy order the antibiotic in order to
minimize total cost?

Example: If you use 4 orders of 50 bottles each, you need 50 storage places. If you
use 10 orders of 20 bottles each, you only need 20 storage places, but it costs more to
order.

Les = = number of bottles per order, and y = number of orders.

The total annual cost is C' = 40y + 5.

In order to write the total cost C' as a function of one variable, we must find a
relationship between x and y.

The total number of bottles is zy = 200, so y = Qlﬂ
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5. Graphing and Optimization

5-6 Optimization
EXAMPLE 4: Inventory Control

Certainly, z must be at least 1 and cannot exceed 200. We must solve the following
equation:

Minimize C(z) = 8000 +5z 1<z<200
C,(x) _ 8000
7= 40
C' (z) = 8200 (1,200)
Therefore,
Min C(z) = C(40) = @ +5-40 = 400
_ % _5

The pharmacy will minimize its total cost by ordering 40 bottles five times during the
year.
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5. Graphing and Optimization

5-6 Optimization

EXERCISES
1. Find two positive numbers z, y such that
@ the sum 2z + y = 900.

@ the product A = xy is maximized.

2. A farmer needs to build a fence to make a rectangular yard next to an adjacent
pasture. He only needs to fence 3 sides because the 4th side already has a fence. He
has 900 feet of fence to use.

What dimensions give the largest yard?

3. Katie is a seamstress who makes wedding dresses. Her monthly cost and revenue
functions when making x wedding dresses can be modeled approximately by
C(z) = 200 + 1502 and R(z) = 700z — 35x%, where 0 < x < 15

@ How many dresses should Katie make each month to maximize revenue?
@ How many dresses should Katie make each month to maximize profit?

@ Are the values from parts a and b the same? If not, explain why they may be
different.
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