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RÉSUMÉ EN FRANÇAIS

Les données acquises à partir de systèmes interactifs à grande échelle, tels que les
réseaux informatiques, écologiques, sociaux, financiers ou biologiques, sont de plus en plus
répandues et accessibles. Au sein de l’apprentissage automatique moderne, la représen-
tation, le traitement ou l’analyse efficaces de ces données structurées à grande échelle à
l’aide de graphes ou de réseaux sont quelques-uns des problèmes clés [99, 16]. Le domaine
émergent du traitement du signal sur graphe met en évidence les liens entre les domaines
que sont le traitement du signal et la théorie spectrale des graphes [115, 103], tout en étab-
lissant des passerelles pour relever ces défis. En effet, le traitement du signal sur graphe
a conduit à de nombreuses applications dans le domaine de l’apprentissage automatique :
réseau de neurones convolutifs (CNN, convolutional neural networks) sur graphe [18, 68,
33], classification semi-supervisée avec CNN sur graphe [77, 64] ou détection de commu-
nautés [127], pour n’en citer que quelques-unes. Nous renvoyons le lecteur à [38] pour une
analyse récente offrant de nouvelles perspectives sur le traitement du signal sur graphe
pour l’apprentissage automatique, dont son rôle important dans certaines des premières
conceptions d’architectures de réseaux de neurones sur graphe (GNN, graph neural net-
works). En outre, l’étude récente de [54] montre que les GNN populaires conçus d’un
point de vue spectral, tels que les CNN spectraux sur graphe ou les réseaux d’attention
sur graphe, résolvent implicitement des problèmes de débruitage de signal sur graphe.

Au cours des dernières décennies, la représentation creuse dans un repère a joué un
rôle fondamental dans de nombreux domaines tels que la compression et la restauration de
signaux, l’analyse de données et le traitement du signal sur graphe en général. En effet, les
représentations surcomplètes telles que les repères d’ondelettes présentent plusieurs avan-
tages et offrent plus de flexibilité que les bases orthonormées. Une famille représentative
de systèmes surcomplets dérivée des ondelettes de diffusion (diffusion wavelets) orthonor-
mées de [27] est la transformée en ondelettes spectrales sur graphe (SGWT, spectral graph
wavelet transform) de [65] construite à partir d’un repère d’ondelettes général. Dans un
contexte de débruitage, la SGWT a récemment été adaptée par [58] pour former un repère
ajusté en utilisant la décomposition de Littlewood-Paley inspirée par [28]. En se basant
sur la SGWT, les auteurs de [86] ont proposé un calibrage automatique du paramètre
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Résumé en français

de seuil en adaptant l’estimateur sans biais du risque de Stein (SURE, Stein’s unbiased
risk estimate) pour un signal bruité défini sur un graphe et décomposé dans un repère
ajusté d’ondelettes donné. Même si ce critère de sélection produit des estimateurs efficaces
de l’erreur quadratique moyenne inconnue, la principale difficulté est la nécessité d’une
décomposition complète de la matrice laplacienne, ce qui est rédhibitoire pour les graphes
à grande échelle.

Nous proposons dans cette thèse d’étendre cette méthodologie aux graphes creux de
grande taille en évitant cette décomposition afin d’élargir son champ d’application. Dif-
férentes stratégies ont été proposées dans le contexte du traitement du signal sur graphe,
l’une des plus populaires étant basée sur l’approximation par polynômes de Chebyshev
[65]. Cependant, même si cette dernière constitue un bon choix dans de nombreuses sit-
uations, les approximations des fonctions discontinues ou non périodiques souffrent du
phénomène de Gibbs. Une solution simple couramment utilisée en traitement du signal
sur graphe [114] pour réduire les éventuelles oscillations parasites sans coût de calcul
supplémentaire est l’introduction de coefficients d’amortissement de Jackson [73, 34], qui
permet des ordres d’approximation plus élevés.

Comme le SURE peut être évalué dans le domaine des ondelettes, son calcul béné-
ficie directement de ces approximations numériques efficaces. Pour qu’il soit adapté aux
graphes creux de grande taille, la seule difficulté est le calcul de poids apparaissant dans
son expression. En effet, puisque la SGWT n’est pas orthogonale, un bruit blanc gaussien
dans le domaine du graphe est transformé en un bruit corrélé, ce qui introduit une pondéra-
tion par cette covariance dans le terme de divergence du SURE. Ce dernier nécessite donc
le calcul explicite et le stockage du repère pour être calculé. Inspirée par l’estimation de
la corrélation entre les ondelettes centrées sur différents sommets proposée dans [127],
notre contribution consiste à tirer parti de l’interprétation des poids du SURE comme la
covariance entre les transformées en ondelettes de signaux aléatoires afin de les estimer
avec une approximation de Monte-Carlo. Nous insérons ensuite cet estimateur de poids
dans la formule du SURE pour en obtenir un estimateur qui s’adapte bien aux signaux
sur graphes de grande taille. En outre, nous fournissons des expressions pour la variance
de nos estimateurs proposés et montrons que le tirage d’échantillon de Monte-Carlo à
partir de la loi de Rademacher centrée produit une meilleure convergence en comparaison
avec la loi gaussienne standard. Notre approche est conforme à d’autres méthodes [107,
138] qui utilisent également l’approximation de Monte-Carlo, mais estiment seulement le
terme de divergence du SURE dans le cas d’un bruit non corrélé.
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La méthode que nous proposons permet de réduire le bruit de tout signal défini sur
un graphe, y compris les images [115] et les maillages 3D [100] qui peuvent comporter
un grand nombre de sommets. Nous nous concentrons ici sur une application intéressante
en matière de confidentialité différentielle [46, 43, 44] dont l’objectif est de protéger les
données sensibles utilisées par les algorithmes. Certains travaux de la littérature se sont in-
téressés à la protection des sommets [76] et des arêtes [83] d’un graphe dans ce cadre. Pour
un signal sur graphe, de telles garanties de confidentialité sont généralement obtenues en
lui ajoutant du bruit blanc, ce qui réduit inévitablement son utilité statistique puisque les
informations pertinentes qu’il contient sont perturbées. Cette utilité peut être partielle-
ment restaurée par débruitage à condition qu’aucune information sur le signal original ne
soit utilisée, des techniques de lissage sur graphe ont d’ailleurs déjà été employées dans ce
but [7]. Comme la méthodologie que nous proposons ne dépend que des données observées,
elle se prête bien à cette utilisation pour les signaux sur graphes que nous intégrons dans
notre application numérique. Celle-ci permet d’évaluer notre estimateur Monte-Carlo du
SURE et ses poids, ainsi que la méthodologie globale de débruitage sur des graphes de
petite et de grande taille. En résumé, les contributions de cette thèse sont les suivantes :

— Premièrement, nous proposons un estimateur des poids du SURE grâce à leur in-
terprétation en terme de covariance entre transformées en ondelettes de signaux
aléatoires sur graphes. Notre approche combinant la transformée rapide basée sur
l’approximation par polynômes de Chebyshev avec l’estimation par Monte-Carlo
permet de contourner la décomposition de la matrice laplacienne du graphe coû-
teuse en ressources de calcul. Une fois estimés, nous utilisons ces poids pour con-
struire un estimateur du SURE qui s’adapte bien aux graphes de grande taille.

— Ensuite, nous explicitons les variances de ces deux estimateurs et mettons en év-
idence une meilleure convergence lorsque l’échantillon de Monte-Carlo provient
d’une loi de Rademacher en comparaison avec la loi gaussienne. Nous complétons
ce résultat théorique avec une illustration numérique.

— Enfin, nous réalisons une évaluation expérimentale de la méthodologie proposée
de débruitage de signal sur graphe en montrant ses performances sur des données
réelles protégées par confidentialité différentielle et sur des signaux simulés sur
graphes de grande taille.

Cette thèse s’inscrit dans le travail de recherche du groupe Orange qui a choisi la
cybersécurité comme un de ses axes stratégiques de développement. En effet, les cyber-
menaces connaissent un développement rapide ces dernières décennies notamment du fait
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des nouvelles capacités de calcul et de l’adoption des techniques de la science des données
dans ce domaine. Cet opérateur et fournisseur de services a donc pour ambition d’être à
la pointe des technologies liées à l’analyse des données pour la sécurité de ses infrastruc-
tures et des données de ses clients. En accord avec le règlement général sur la protection
des données (RGPD), Orange doit par ailleurs développer cette expertise et ces nouvelles
technologies dans le respect des données personnelles de ses clients.

Dans cette optique, il a déjà entamé divers projets de recherche avec sa division Orange
Innovation. Ses travaux portent notamment sur la protection des données de mobilité [52,
19] et la synthétisation de données [12] dans le cadre de la confidentialité différentielle.

Plan de la thèse

Le Chapitre 1 est consacré à la présentation du domaine du traitement du signal sur
graphe et plus précisément à son application dans la réduction du bruit. Dans une première
section, nous rappelons les définitions classiques du graphe et des signaux définis sur des
graphes, présentons la transformée de Fourier sur graphe et enfin passons en revue la
transformée en ondelettes particulière dans le contexte des graphes qu’est la SGWT. Puis
dans une deuxième section, nous exposons une procédure de débruitage reposant sur le
seuillage des coefficients d’ondelettes de cette transformée, présentons différents processus
de seuillage et quelques méthodes de sélection de paramètres de seuillage dont celle de la
minimisation du SURE qui nous intéresse spécifiquement.

Le Chapitre 2 porte sur le champ de recherche de la confidentialité différentielle. Nous
introduisons en première section cette formalisation du concept de confidentialité dans
le contexte des jeux de données statistiques. En particulier, nous présentons différentes
définitions de confidentialité différentielle, quelques mécanismes permettant de l’atteindre
ainsi que des propriétés intéressantes sur la composition de ces derniers. La section suiv-
ante s’intéresse à l’utilisation de la confidentialité différentielle dans le contexte industriel
et son application possible aux graphes.

Le Chapitre 3 de ce manuscrit présente la contribution de cette thèse qui propose
une solution au problème de complexité de calcul du SURE dans le cadre du seuillage de
coefficients d’ondelettes sur graphe. Les résultats qui lui sont associés ont fait l’objet d’une
publication dans le journal IEEE Transactions on Signal and Information Processing over
Networks [23].
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Chapter 1

GRAPH SIGNAL PROCESSING AND

APPLICATION TO DENOISING

We introduce in this chapter the domain of graph signal processing and its application
in noise reduction. In this first section, we recall classical definitions of graphs and graph
signals, present the graph analogue of the Fourier transform and finally review the spectral
graph wavelet transform that will be of interest in this dissertation.

1.1 Graph signal processing

1.1.1 Graphs and graph signals

Graph definition

Let G = (V , E) be a graph consisting of a finite set of vertices V connected together by
edges from a set E ⊆ V ×V . If there exists an edge between two vertices, they are said to
be adjacent to each other. An edge that connects a vertex to itself is called a loop. Unless
specified otherwise, we consider graphs without loops in this dissertation. The number of
vertices is n = |V| and we number each vertex i ∈ V of the graph from 1 to n.

A weighted graph is a graph equipped with a weight function w : E → R that assigns to
each edge (i, j) a weight wij. These can be gathered in a square matrix W of size n called
the weight matrix whose entries are given by Wij = wij if the vertices i and j are adjacent,
and Wij = 0 otherwise. The diagonal elements of the weight matrix are zero for graphs
without loops. When a graph has no edge weights, the graph edges are represented by
entries Wij = 1 and W is called the adjacency matrix. Hereinafter, we indistinctly write
(wij)i,j=1,...,n to refer to the weight matrix entries.

Graph edges that have an orientation from one vertex i to another j are called directed
edges and denoted by an ordered pair of vertices (i, j). If a graph contains at least one such
edge, it is known as a directed graph. This dissertation only covers undirected graphs which

13



Chapter 1 – Graph signal processing and application to denoising

are exclusively composed of symmetric edges {i, j} that can be seen as edges connecting
vertices in both directions. Graphs of this kind have symmetric edge weights wij = wji

and thus a symmetric weight matrix W. The transformation Wsym = 1
2(W + W∗) is

commonly used to symmetrize a directed graph.
A subgraph H = (V ′, E ′) of a graph G = (V , E) is a graph whose sets of vertices and

edges are subsets of those of G. One way to form a subgraph is by choosing V ′ ⊆ V and
taking all the edges from E that connect pairs of vertices in V ′, that is, E ′ = E ∩ (V ′×V ′).
A sequence of edges which joins a sequence of distinct vertices is called a path. Undirected
graphs are connected if a path exists between every pair of vertices. The vertex and edge
sets of any graph can be partitioned into a unique set of components which are the largest
connected subgraphs of the graph. Thus, connected graphs have exactly one component
and we only consider these throughout this dissertation for the sake of simplicity. An
example of such a graph with symmetric, weighted edges is shown on Figure 1.1. All
graph figures in this dissertation are produced with the NetworkX [62] Python package.

0.
2

0.4

0.6

0.6

0.8

1.0

1

2

3

5

4

Figure 1.1 – Undirected, connected, weighted graph example

The degree di = ∑n
j=1 wij of a vertex i is the sum of the weights assigned to the

edges that connect to it. For unweighted graphs, it corresponds to the number of vertices
adjacent to i. We define the degree matrix as the matrix whose diagonal elements are the
degrees of the graph: D = diag(d1, . . . , dn).

Graph construction

In many practical situations, the weight matrix W is not known from theory, but can
be constructed from data points. Here, we illustrate some examples of such constructions.

14



1.1. Graph signal processing

If each vertex is associated with additional data in the form of space coordinates or feature
values, the Euclidean distance d(i, j) or another one can be computed between each pair
of vertices. This distance can then be used to decide whether to draw an edge between
two vertices and choose its assigned weight value.

Given a vertex set, selecting edges is commonly done by considering that two distant
vertices from one another have little to no influence on each other. One straightforward
method is to draw an edge between vertices whose distance from each other is smaller
than a threshold κ:

wij =

1 if d(i, j) ≤ κ

0 otherwise.

A second way consists in connecting each vertex i to its k-nearest neighbors kNN(i) [37].
Since one vertex can belong to the neighbors of another but not vice versa, symmetric
edges are obtained by viewing two vertices as adjacent if at least one does:

wij =

1 if i ∈ kNN(j) or j ∈ kNN(i)

0 otherwise.

In both methods, the choice of the hyperparameter κ or k is decisive as it directly affects
the weight matrix sparsity, that is, its proportion of zero elements. Indeed, we will see in
this section that signal processing on sparse graphs benefits from reduced computational
complexity.

Different approaches exist to define the edge weight values depending on the applica-
tion. For instance, if the vertices of the graph have space coordinates, the edge weights can
directly represent the distance between them: wij = d(i, j). This definition is commonly
used in geometric applications such as transportation networks or polygon meshes. An
inverse approach is to view the edge weights as the strength of connection between the
vertices like in communication or social networks for example. This interpretation in terms
of similarity can be achieved with a decreasing function of the distance in the feature space
[75]. A common choice for this method is the Gaussian kernel: wij = exp

(
−d(i,j)2

2α2

)
, with

α > 0 the kernel bandwidth parameter. It produces edge weights whose values range from
0 to 1 and is therefore easily interpreted as a similarity measure. An additional motivation
for the Gaussian kernel is its popular use on manifolds [74] which are usually approxi-
mated with a graph associated to a sampled point cloud [10]. More graph construction
methods for defining both edges and their weights can be found in [60, Chapter 4].
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Chapter 1 – Graph signal processing and application to denoising

Note that each approach yields non-negative weights that are preferable to work with
in graph signal processing. In some applications, negative edge weights can represent the
strength of repulsion between vertices such as antagonistic interactions in a network [3]
for instance. However, many methods in this domain involve the eigendecomposition of
matrices derived from the weight matrix W for which more theoretical results presented
below exist when wij ≥ 0. For this reason and the sake of simplicity, we only consider real
non-negative edge weights in this dissertation.

Graph Laplacian matrices

The Laplacian matrix and its variants are other matrix representations of a graph
whose respective definitions combine the weight matrix W and the degree matrix D.
They play an essential role in the understanding of the graph they are defined from. In
particular, their eigenvalues and eigenvectors are studied in the field of spectral graph
theory [25, 120] to reveal the principal properties and structure of the graph.

The most simple one is the unnormalized (or combinatorial) Laplacian matrix defined
as the difference

L = D−W,

whose elements are given by

Lij =

di if i = j

−wij otherwise.

Since we are interested in undirected graphs, the graph Laplacian L is a real symmetric
matrix. It is therefore diagonalizable with real eigenvalues and orthonormal eigenvectors
that we denote λ1, . . . , λn and v1, . . . ,vn, respectively.

For any vector x ∈ Rn and with wij ≥ 0, the quadratic form it defines is non-negative:

x⊤Lx =
∑

{i,j}∈E
wij(x(i)− x(j))2 ≥ 0.

As a result, L is positive semi-definite and thus its eigenvalues are all non-negative. Note
that non-negative weights are sufficient but not necessary for the spectrum to be non-
negative. In addition, the smallest eigenvalue is zero with multiplicity equal to the number
of components of the graph [17, Proposition 1.3.7]. Since we consider connected graphs,
zero appears only once in the spectrum. Finally, the authors of [31] show the largest
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1.1. Graph signal processing

eigenvalue is bounded from above by twice the maximum degree of the graph: dmax =
maxi di. We summarize these bounds with the following ordering:

0 = λ1 < λ2 ≤ · · · ≤ λn ≤ 2dmax.

Among the many properties from spectral graph theory worth mentioning, the eigen-
vector v1 associated with the null eigenvalue λ1 is constant and valued 1√

n
at each vertex.

Also, the second smallest eigenvalue λ2 is known as the algebraic connectivity of G [51]
whose value is related to the connectedness of the graph. If we gather the eigenvalues and
eigenvectors in the respective matrices Λ = diag(λ1, . . . , λn) and V = (v1| . . . |vn), the
eigendecomposition of the graph Laplacian is given by

L = VΛV⊤.

In some applications, it is preferable to normalize the Laplacian matrix such that its
diagonal elements are all equal to one. This can be done by dividing each weight wij by
the vertex degrees

√
didj which defines the normalized Laplacian matrix :

Lnorm = D− 1
2LD− 1

2

= In −D− 1
2 WD− 1

2 .

Its elements are given by

Lnorm
ij =


1 if i = j

− wij√
didj

otherwise.

This symmetric matrix is well-defined as long as the graph contains no isolated vertices
whose degrees are zero. Moreover, non-negative edge weights ensures all degrees are real
positive and the normalized Laplacian is a real matrix. It is therefore unitarily diagonaliz-
able with non-negative real eigenvalues µ1, . . . , µn associated with eigenvectors u1, . . . ,un.
The multiplicity of zero is equal to the number of components as with the unnormalized
Laplacian matrix and the largest eigenvalue is always smaller than two [25, Lemma 1.7].
This gives the ordering

0 = µ1 < µ2 ≤ · · · ≤ µn ≤ 2,
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Chapter 1 – Graph signal processing and application to denoising

such that the matrices M = diag(µ1, . . . , µn) and U = (u1| . . . |un) produce the spectral
decomposition

Lnorm = UMU⊤.

Both the Laplacian matrix L and its normalized variant Lnorm can be used in graph signal
processing methods based on the graph spectrum. There is no clear indication as to which
to choose since they each have their own advantages and disadvantages. For instance, the
eigenvector v1 of L associated with the zero eigenvalue being constant is helpful to extend
intuitions about the direct current (DC) component from the theory of classical signal
processing [115], that is, the average value of a signal: ∀x ∈ Rn, x⊤v1 = 1√

n

∑n
i=1 x(i) =

√
nx̄. On the other hand, the spectrum of Lnorm benefits from an invariant upper bound

that eases the comparison of a given method over graphs of varying maximum degrees.

An alternative normalization of the Laplacian matrix is to multiply it by the inverse
of the degree matrix on the left, doing so yields the random walk Laplacian matrix

Lrw = D−1L

= In −D−1W,

whose entries are given by

Lrw
ij =

1 if i = j

−wij

di
otherwise.

This matrix is named after the random walk matrix P = D−1W which describes the
transitions of a Markov chain defined on the vertices of the graph. Its elements are the
transition probabilities of going from a vertex i to another j proportional to the weight of
the edge in-between: Pij = wij

di
. Note that even if the weight matrix W is symmetric, the

same is not necessarily true of P and thus Lrw. It is only the case for regular graphs whose
vertices all have equal degrees, that is, di = dj for all i, j. As this type of graph is rarely
encountered in graph signal processing applications, the random walk Laplacian matrix
is usually asymmetric and its eigenvectors not orthogonal for the usual inner product. It
has however proved to be successful in some domains such as spectral clustering [129] and
image processing [85] to give a few examples.

Despite its lack of symmetry, the random walk Laplacian matrix is nonetheless diag-
onalizable as it is similar to the normalized Laplacian: Lnorm = D 1

2LrwD− 1
2 . As a result,

they share the same eigenvalues and have related eigenvectors. This is easily observed
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1.1. Graph signal processing

from the eigenpairs of Lnorm:

Lnormuℓ = µℓuℓ

D
1
2LrwD− 1

2uℓ = µℓuℓ

Lrw(D− 1
2uℓ) = µℓ(D− 1

2uℓ),

for all ℓ = 1, . . . , n. We see that Lrw has exactly the same spectrum as Lnorm and
its eigenvectors are given by D− 1

2u1, . . . ,D− 1
2un. With the appropriate inner product

⟨x,y⟩D = x⊤Dy, the latter form an orthonormal basis for Rn.

Graph signals

While the notions presented above from spectral graph theory focus on the structure
of the graph, they form the basis of graph signal processing [115, 102]. This field aims
to study signals whose values reside on the graph vertices. Formally, a graph signal is a
function f : V → R that assigns to each vertex i a real value f(i). Assuming the ordering
of the vertices from 1 to n, the graph signal can be represented by a vector f ∈ Rn

where the ith element is equal to the function value at the ith vertex. Figure 1.2 illustrates
examples of signals defined on a same graph composed of 100 vertices and 295 edges.

Notice how these graph signals vary differently from one vertex to another: the first
signal (1.2a) is completely constant across all vertices while the last one (1.2d) displays
many variations over the whole graph. As for the other two graph signals (1.2b and 1.2c),
a relative regularity can be observed where vertices close to each other on the graph
have similar associated signal values. Here, the notion of closeness corresponds to vertices
being strongly connected by edges and more generally by paths of varying sizes. Thus,
considering the underlying structure of a graph is decisive in the proper analysis of any
signals defined on its vertices.

A general measure for the global smoothness of a graph signal f is given by the discrete
p-Dirichlet form [115]:

Sp(f) = 1
p

∑
i∈V

∑
j∈Ni

wij(f(i)− f(j))2


p
2

,

where Ni = {j ∈ V | (i, j) ∈ E} is the neighborhood of vertex i, that is, the set of vertices
connected to it by an edge. This form is commonly used with two particular values of p
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Figure 1.2 – Examples of graph signals with their respective Rayleigh quotient.

that yield well-known quantities: S1(f) is the total variation of the signal f on the graph
whereas S2(f) equates to the Laplacian quadratic form as seen above:

S2(f) = 1
2
∑
i∈V

∑
j∈Ni

wij(f(i)− f(j))2

=
∑

{i,j}∈E
wij(f(i)− f(j))2 = f⊤Lf .

This specific measure of the signal smoothness can be understood as the weighted cumu-
lative energy of the signal changes across the graph vertices. It is no coincidence that the
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1.1. Graph signal processing

Laplacian matrix L appears here because, by definition, it is a differential operator:

(Lf)(i) =
∑

j∈Ni

wij(f(i)− f(j)).

Normalizing the Laplacian quadratic form S2(f) with the signal energy f⊤f = ∥f∥2
2

gives the Rayleigh quotient RL(f) = f⊤Lf
f⊤f

. This measure is particularly useful to compare
the smoothness of signals with distinct norms defined on a same graph. Like Sp(f), it
is equal to zero for constant signals across all vertices and increases with the number of
oscillations in the signal as illustrated by Figure 1.2. More precisely, it is small when the
signal vary slowly between vertices connected by an edge with a large weight.

The Rayleigh quotient is related to the spectrum of the Laplacian matrix in several
ways. First, it takes values between the smallest and largest eigenvalues of L:

λ1 = min
f∈Rn∖{0}

RL(f), λn = max
f∈Rn∖{0}

RL(f),

where the minimum and maximum are reached for the eigenvectors v1 and vn, respectively.
Moreover, the Rayleigh quotient can be used to iteratively identify all eigenvalues and
associated eigenvectors through the Courant-Fischer theorem [70, Theorem 4.2.6]:

λℓ = min
f∈Rn∖{0}
f⊥v1,...,vℓ−1

RL(f), ℓ = 2, . . . , n,

for which the eigenvector vℓ is the solution of the ℓth problem. In words, each consecutive
eigenvector is the smoothest nonzero vector orthogonal to its predecessors. In addition,
from Lvℓ = λℓvℓ and v⊤

ℓ vℓ = 1, we have

RL(vℓ) = v⊤
ℓ Lvℓ

v⊤
ℓ vℓ

= λℓv
⊤
ℓ vℓ = λℓ.

Thus, each eigenvalue precisely measures the smoothness of its corresponding eigenvector
and therefore carries a notion of frequency: small (resp. large) eigenvalues λℓ are associ-
ated with slowly (resp. quickly) oscillating eigenvectors vℓ over the graph vertices. This
relationship proves useful to define graph analogues of the Fourier and wavelet transforms
using the Laplacian eigenvectors.
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Chapter 1 – Graph signal processing and application to denoising

Graph Laplacian convergence

Several convergence results of the graph Laplacian towards the manifold Laplace-
Beltrami operator have been established in the literature [10, 116, 126]. Let x1, . . . , xn be
uniformly sampled points from a manifold M ⊂ Rn and let g ∈ C∞(M) be a function
defined on this manifold. We construct an associated graph whose vertices are the n

sampled points and edge weights are computed with a Gaussian kernel of the Euclidean
distance as presented above: wij = exp

(
−d(xi,xj)2

2α2

)
, with xi the coordinates of vertex i

and α > 0. The point cloud Laplace operator is defined by

Lng(x) = g(x) 1
n

∑
j

exp
(
−d(x, xj)2

2α2

)
− 1
n

∑
j

g(xj) exp
(
−d(x, xj)2

2α2

)
,

where x is an arbitrary point on the manifold. This Laplacian associated to the point cloud
is an extension of the graph Laplacian applied to the graph signal g = (g(x1), . . . , g(xn))⊤:

Lng(xi) = g(xi)
1
n

∑
j

wij −
1
n

∑
j

g(xj)wij

= 1
n

∑
j

wij(g(xi)− g(xj)) = 1
n

(Lg)(i).

Under certain assumptions, the point cloud Laplace operator Lng converges in probability
to the Laplace-Beltrami operator on the manifold ∆Mg as the sampling density increases,
that is, as the sample size n→∞ and the kernel bandwidth α→ 0.

1.1.2 Graph Fourier transform

Laplacian based graph Fourier transform

In classical signal processing, the Fourier transform decomposes time continuous sig-
nals with oscillating components called the Fourier modes. These are the eigenfunctions
g of the Laplace operator ∆ which, together with the associated eigenvalues λ satisfy the
Helmholtz equation: −∆g = λg. In the one-dimensional case, we have

−∆g(t) = −∇2g(t) = λg(t)⇔ ∂2

∂t2
g(t) = −λg(t)⇔ g(t) = ei

√
λt,

where ∇ is the gradient operator and t ∈ R. The eigenvalues and eigenfunctions of the
Laplace operator are respectively {(2πν)2}ν and {eν(t) = ei2πνt}ν , where ν ∈ R is the
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1.1. Graph signal processing

frequency. Hence, rapidly oscillating continuous Fourier modes go with large eigenvalues
as the frequency increases in absolute value. Inversely, low frequencies close to zero produce
smooth Fourier modes and small associated eigenvalues. The classical Fourier transform
corresponds to the projection of an absolutely integrable function f on the Fourier basis
{eν(t)}ν∈R using the Hermitian inner product ⟨f, g⟩ =

∫
R f(t)g(t)dt.

Definition 1.1.1 (Fourier transform). The Fourier transform f̂ ∈ L1(R) at frequency ν
of a function f ∈ L1(R) and its inverse are given by

f̂(ν) = ⟨f, eν⟩ =
∫
R
f(t)e−i2πνtdt

f(t) = ⟨f̂ , ēν⟩ =
∫
R
f̂(ν)ei2πνtdν.

A common approach to define the Fourier transform of a graph signal is to consider
the eigenvectors of the Laplacian matrix as a Fourier basis. Their analogous behavior in
relation to the eigenvalues intuitively makes them suitable candidates for Fourier modes
in the graph domain. Moreover, the discrete Fourier transform of a time series is directly
linked to the Laplacian matrix of the cycle graph. This particular type of graph composed
of n vertices connected by n edges in a closed chain can be used to represent a periodic
time series ft of period n as shown on Figure 1.3.
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f2

f3

f4

f5

. . .

fn−1

L =



2 −1 0 0 −1
−1 2 −1 0
0 −1 2

0
0 −1
−1 0 0 −1 2



Figure 1.3 – Cycle graph representation of an n-periodic time series

It is well known that the Laplacian eigenbasis of the cycle graph is identical to the
Fourier modes of the discrete Fourier transform [61] given by f̂(νℓ) = 1√

n

∑n−1
t=0 fte

−i2πνℓt,
with νℓ = ℓ−1

n
and ℓ = 1, . . . , n. Indeed, the Laplacian eigenvalues and eigenvectors are

respectively λℓ = 2−2 cos(2πνℓ) and vℓ = (1, ζ1
ℓ , . . . , ζ

n−1
ℓ )⊤, where ζℓ = ei2πνℓ [17, Section
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Chapter 1 – Graph signal processing and application to denoising

1.4.3]. This result further supports the definition of the graph Fourier transform as the
projection of a signal on the eigenvectors of the Laplacian matrix.

Definition 1.1.2 (Graph Fourier transform). The graph Fourier transform f̂(λℓ) at fre-
quency λℓ of a signal f ∈ Rn defined on a graph G and its inverse are given by

f̂(λℓ) = ⟨f ,vℓ⟩ =
n∑

i=1
f(i)vℓ(i)

f(i) =
n∑

l=1
f̂(λℓ)vℓ(i),

where λℓ and vℓ are the eigenvalues and eigenvectors of the graph Laplacian matrix.

Through this definition, we see that the graph Fourier transform is a linear operator
which can be represented by a matrix: f̂ = V⊤f , with V = (v1| . . . |vn). Because V is
an orthogonal matrix, the graph Fourier transform verifies the Plancherel theorem like its
classical analogue:

⟨f̂ , ĝ⟩ =
(
V⊤f

)⊤
V⊤g = f⊤VV⊤g = ⟨f , g⟩,

where f , g ∈ Rn. As a result, the transform also preserves the graph signal energy as
stated by Parseval’s identity:

∥f̂∥2
2 = ∥f∥2

2.

The graph Fourier transform provides a way to view a signal as a function of the
Laplacian eigenvalues. A given signal can thus be represented in the graph spectral domain
in addition to the usual vertex domain. Figure 1.4 shows an example of a graph signal f
represented in both domains: its values on the vertices of a graph are represented on the
left and its graph Fourier coefficients f̂(λℓ) on the right.

Similarly to the classical Fourier transform, the graph Fourier coefficients of a smooth
signal decay when the frequency increases. As illustrated, the signal visible smoothness
on the vertices translates to most of its energy being concentrated in the low frequencies.
This means its projection on the Fourier basis is mainly supported by the slowly oscillating
eigenvectors. Consequently, a smooth graph signal is compressible in the sense that just a
few Fourier coefficients are needed to approximate it as it is the case with classical signal
processing [140].

The interaction between the smoothness of a signal and its graph Fourier transform
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Figure 1.4 – Equivalent representations of a graph signal in the vertex (left) and graph
spectral (right) domains.

is also observed in the Rayleigh quotient. Indeed, with Parseval’s identity and the eigen-
decomposition L = VΛV⊤, we have the alternative formula

RL(f) = f⊤Lf
f⊤f

= f̂⊤Λf̂
f̂⊤f̂

=
∑n

l=1 λℓf̂(λℓ)2∑n
l=1 f̂(λℓ)2

,

where the Rayleigh quotient appears as a weighted average of the Laplacian eigenvalues by
the Fourier coefficients. Here again, we see that for smooth signals the average is weighted
towards the lower eigenvalues and thus the resulting Rayleigh quotient is small.

Other graph Fourier transforms

Other definitions of the graph Fourier transform have been proposed. We briefly
present two of them based on the eigenvectors of other graph matrix representations.

First, the Laplacian matrix can be replaced with its normalized variant Lnorm whose
eigenvalues µℓ and eigenvectors uℓ provide a comparable notion of frequency [57]. As we
have RLnorm(uℓ) = µℓ, the same relationship where large eigenvalues are associated with
quickly oscillating eigenvectors is observed. The normalized Laplacian matrix based graph
Fourier transform is given by

f̂ = U⊤f ,

where U = (u1| . . . |un). As with the standard Laplacian matrix L, the normalized Lapla-
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Chapter 1 – Graph signal processing and application to denoising

cian matrix has been proved to converge to the manifold Laplace-Beltrami operator under
certain conditions [10]. Additionally, it is likewise limited to graphs composed of symmet-
ric edges with non-negative weights to benefit from the useful theoretical results on its
spectrum presented in Section 1.1.1.

Another graph Fourier transform definition based on algebraic signal processing theory
[106] is proposed by the authors of [111]. Their approach is built on the observation that
the weight matrix W of the directed cycle graph, whose elements are wij = 1{i−j≡1 mod n},
matches the time shift operator of periodic time series: (Wf)(i) = f(i − 1). For any
directed, weighted graph, this operation is called the graph shift and replaces a graph signal
value on a given vertex with the weighted linear combination of the signal values on the
adjacent vertices: f̃(i) = (Wf)(i) = ∑

j∈Ni
wijf(j). The eigenbasis of the weight matrix

is used as a Fourier basis to define the weight matrix based graph Fourier Transform:

f̂ = T−1f ,

with T the matrix of eigenvectors of W. Because this definition applies to directed graphs,
the lack of symmetry of W implies T is not orthogonal and thus no explicit formula can be
given as with the previous graph Fourier transform definitions. Moreover, the Plancherel
theorem and Parseval’s identity are not verified for the same reasons. Another disad-
vantage of this approach comes from the difficult interpretation of the weight matrix
complex-valued eigenvalues as frequencies. In the particular case of a real spectrum, the
authors provide an analysis [112] through a definition of the graph signal total variation
based on the graph shift operator: TV(f) = ∥f −Wf∥1. They show that eigenvectors
associated with large eigenvalues vary slowly between the graph vertices and vice versa.
With this limited result, the problem of interpreting complex eigenvalues however re-
mains to be addressed. On the other hand, this graph Fourier transform benefits from a
wide range of possible applications because its definition is not restricted to graphs with
non-negative real edge weights like the Laplacian matrix based ones are. This approach
is therefore an appropriate tool in the study of signals on negatively or even complex
weighted graphs.

All three graph Fourier transforms presented above share a common problem: they
involve the eigendecomposition of a matrix whose size directly depends on the size of
the graph. For a graph composed of n vertices, the diagonalization of either Laplacian
matrices or the weight matrix has a computational complexity of O(n3) with most eigen-
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1.1. Graph signal processing

value algorithms. Hence, these approaches to compute the graph Fourier transform are
limited to graphs with less than a few thousand vertices. As some applications in signal
and image processing can involve data with millions of dimension or more, approximate
computational methods are required to extend this transform to large-scale graphs. We
can cite the approximate fast graph Fourier transform [78] which is based on an approx-
imate diagonalization of the graph Laplacian matrix performed with a modified Jacobi
eigenvalue algorithm. Alternatively, other methods [88] allow for a fast and exact graph
Fourier transform providing that the graph has suitable symmetry properties.

1.1.3 Spectral graph wavelet transform

Although the Laplacian based graph Fourier transform is a straightforward method
for the study of graph signals, it lacks convenient properties to get a finer analysis such
as localization. Indeed, the Fourier transform of a graph signal is global in the sense that
most of its Fourier modes, that is, the Laplacian matrix eigenvectors are not localized in
the vertex domain of the graph.

Localized, multiscale transforms for signals on graphs

Different localized transforms have been proposed to locally study a graph signal
around a vertex through the values it takes on the neighbor vertices at different scales.
These methods are usually adaptations of wavelet transforms from classical signal pro-
cessing which can localize signal information in both the time and frequency domains.
Correspondingly, graph wavelet transforms are designed so that graph signal information
is localized in both the vertex and graph spectral domains.

A graph signal f is said to be localized in the vertex domain when most of its energy
∥f∥2

2 is concentrated on the relatively close neighbors of a given vertex. The size of the
neighborhood generally depends on a scale parameter which controls the degree of local-
ization. In the same way, we can say that a graph signal is localized in the spectral domain
if its projection f̂ on the graph Laplacian eigenvectors has most of its energy ∥f̂∥2

2 con-
centrated in a band of frequencies centered around a given frequency. Localization in the
graph spectral domain is illustrated on Figure 1.4 where the energy is mostly supported
by the low frequencies. On the contrary, the distribution of the graph signal energy is more
scattered across the graph vertices and thus does not portray vertex domain localization.
The graph wavelet transform designs are of two types: vertex domain designs and graph
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spectral domain designs.

The vertex domain designs of graph wavelets are based on spatial features of the graph
like how connected together or distant are its vertices. Some examples of such designs are
random multiscale representations [131] and graph wavelets [29] for unweighted graphs,
along with lifting based wavelets [97, 113] and multiscale tree wavelets [56] for weighted
graphs.

Whereas the graph spectral properties of the vertex domain designs are not explicitly
designed, the graph spectral domain designs of graph wavelets are based on spectral
features of the graph. These are encoded in the eigenvalues and eigenvectors of one of the
graph matrix representations like the graph Laplacian. Designs of this type aim to build
localized bases in both the vertex and graph spectral domains. Examples of graph spectral
domain designs include graph wavelet filterbanks [98, 96], diffusion wavelets [89, 26] and the
spectral graph wavelet transform [65] which we describe in more detail below. The graph
wavelet filterbanks extend the multiscale analysis based on filterbanks from classical signal
processing to graph signal processing. They apply to bipartite graphs whose vertex set can
be partitioned into two subsets such that all edges lie between those sets. Under certain
conditions, the defined filterbanks are critically sampled, provide perfect reconstruction
and are either orthogonal [98] or biorthogonal with localized basis functions on a compact
support [96]. The diffusion wavelets depend on compressed representations of the powers
of a diffusion operator like the graph Laplacian to build a multiscale transform. The
localized basis functions at each scale are then downsampled and orthogonalized through
a variation of the Gram-Schmidt process.

Spectral graph wavelet transform

The theory of wavelets was originally created for square integrable functions defined on
the real line [92, 128]. We first recall the classical wavelet transform in the one-dimensional
case before presenting the spectral graph wavelet transform introduced in [65].

The continuous wavelet transform is usually generated by a single mother wavelet
function ψ ∈ L2(R). Wavelets at scale s > 0 and location a ∈ R are then defined by
appropriately scaling and shifting the mother wavelet:

ψs,a(t) = 1
s
ψ
(
t− a
s

)
.
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It is possible to directly define these wavelets in the Fourier domain as

ψs,a(t) =
∫
R
ψ̂(sν)e−iνaei2πνtdν,

where ψ̂ is the Fourier transform of the mother wavelet and ν ∈ R is the frequency. In this
expression, the wavelet is represented on the eigenfunctions eν(t) = ei2πνt of the Laplace
operator ∆. We also observe that scaling ψ with 1

s
is equivalent to scaling ψ̂ by s in the

Fourier domain. Finally, shifting the mother wavelet to location a is done by multiplying
its Fourier transform by e−iνa.

This expression of the continuous wavelet serves as a basis in [65] to define an analogue
on graphs. Precisely, the spectral graph wavelets at scale s and vertex a ∈ V are designed
in the graph spectral domain as

ψs,a(i) =
n∑

ℓ=1
g(sλℓ)vℓ(a)vℓ(i),

where i ∈ V . In comparison to the previous expression, the mother wavelet Fourier trans-
form ψ̂ is replaced by a wavelet generating function g : R+ → R+ that behaves as a scaled
bandpass filter such that g(0) = 0 and limx→∞ g(x) = 0. Similarly to the graph Fourier
transform, the eigenvalue λℓ now acts as the frequency and the wavelet is represented on
the eigenvectors vℓ(i) of the graph Laplacian L instead of the eigenfunctions eν(t). Last,
shifting the wavelet to vertex a is performed by substituting e−iνa with vℓ(a).

These spectral graph wavelets are accompanied by spectral graph scaling functions
which help ensure stable representation of the low frequency of the signal. They are
similarly constructed by a scaling generating function h : R+ → R which acts as a low-
pass filter such that h(0) > 0 and limx→∞ h(x) = 0. The spectral graph scaling functions
at vertex a ∈ V are given by

ψ0,a(i) =
n∑

ℓ=1
h(λℓ)vℓ(a)vℓ(i).

It should be noted that for all vertices a ∈ V , the spectral graph wavelets and scaling
functions correspond to functional calculus on L. Indeed, for any function ρ : sp(L)→ R
defined on the spectrum of L, we have the general formula ρ(L) = ∑n

l=1 ρ(λℓ)⟨vℓ, ·⟩vℓ. As
a result, with the matrix representation Gs = diag(g(sλ1), . . . , g(sλn)), the wavelet frame
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at scale s reads as
Ψs = (ψs,1| . . . |ψs,n) = VGsV⊤ = g(sL),

where ψs,a = (ψs,a(1), . . . , ψs,a(n))⊤ ∈ Rn is one spectral graph wavelet. Likewise, the
scaling function frame is given by

Ψ0 = (ψ0,1| . . . |ψ0,n) = VHV⊤ = h(L),

where H = diag(h(λ1), . . . , h(λn)).
In the continuous setting, the wavelet coefficients of a function f ∈ L2(R) are given

by the Hermitian inner product with the wavelets:

(Wf)(s, a) = ⟨f, ψs,a⟩ =
∫
R
f(t)ψs,a(t)dt.

By analogy, the wavelet and scaling function coefficients of a graph signal f ∈ Rn are
given by its projection on the spectral graph wavelets and scaling functions, respectively:

(Wf)(s, a) = ⟨f ,ψs,a⟩ = ψ⊤
s,af ,

(Wf)(0, a) = ⟨f ,ψ0,a⟩ = ψ⊤
0,af .

In practice, the continuous scaling parameter s is sampled to a finite number of J
scales S = {sj}J

j=1. This yields a collection of nJ wavelets ψsj ,a and n scaling functions
ψ0,a that can be gathered in a matrix Ψ = (Ψ0|Ψs1| . . . |ΨsJ

) ∈ Rn×n(J+1) to represent
the entire wavelet frame. In this case, the spectral graph wavelet transform (SGWT) is a
linear operator:

Wf = Ψ⊤f ∈ Rn(J+1).

Construction of Parseval frames

At discretized scales, the spectral graph wavelets as first introduced by [65] can be con-
sidered as a frame of which we review the definition [11]. A family of wavelets {ψs,a}s∈S, a∈V

forms a frame of Rn, if there exist frame bounds A,B ∈ (0,∞) satisfying for all f ∈ Rn

A∥f∥2
2 ≤

∑
s,a

|⟨f ,ψs,a⟩|2 ≤ B∥f∥2
2.

The frame bounds A and B give information about the numerical stability of recov-
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ering the graph signal f from the wavelet coefficients Wf . They can be optimized with
an appropriate choice of the wavelet generating function g. The authors of the SGWT
originally proposed the following filter:

g(x;α, β, x1, x2) =


x−α

1 xα for x < x1

p(x) for x1 ≤ x ≤ x2

xβ
2x

−β for x > x2,

where the integers α and β, and the transition points x1 and x2 are parameters of the
filter. It behaves as a monic power near the origin and decays as a power law for large x.
The transition is done with the unique cubic polynomial p(x) that respects the continuity
of g and its derivative g′. Figure 1.5 shows wavelet generating functions g(s·) for J = 4
different scales, p(x) = −5 + 11x − 6x2 + x3 and α = β = 2, x1 = 1, x2 = 2 parameter
value examples as in [65] on the interval [0, 4]. The scaling generating function is given by
h(x) = γ exp

(
−( x

0.12)4
)
, where γ is chosen such that h(0) = max g(x).
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Figure 1.5 – Scaling and wavelet generating functions from [65] for 4 scales.

Other generating functions have since been introduced in the literature to achieve
better frame bounds A and B than the ones associated with the SGWT from [65]. One
type of frame particularly sought after is the tight frame which corresponds to equal
bounds. More specifically, when A = B = 1, the family of wavelets {ψs,a}s∈S, a∈V forms a
Parseval frame and preserves the energy of all graph signal f ∈ Rn in the wavelet domain:

∥f∥2
2 =

∑
s,a

|⟨f ,ψs,a⟩|22 = ∥Wf∥2
2.

In addition, Parseval frames benefit from a simple reconstruction formula similar to

31



Chapter 1 – Graph signal processing and application to denoising

that of an orthonormal basis. A natural choice for the inverse transform in the general
case [65] is the pseudoinverse

W−1 = (W∗W)−1W∗ = (ΨΨ⊤)−1Ψ.

In the specific case of Parseval frames, the wavelet frame Ψ is a semi-orthogonal matrix
which simplifies the inverse transform to

W−1 =W∗ = Ψ.

Any graph signal thus can easily be recovered from its frame decomposition:

f =W∗Wf = ΨΨ⊤f =
∑
s,a

⟨f ,ψs,a⟩ψs,a.

Extensions of the original SGWT to form a Parseval frame have been proposed by [81]
and more recently [58] which we present here. Both approaches use a partition of unity to
define the wavelet generating functions of the spectral graph wavelets. The set {ϕj}J

j=0 of
functions ϕj : [0, λn]→ [0, 1] is a finite partition of unity if it satisfies ∑J

j=0 ϕj(λ) = 1 for
all λ ∈ [0, λn]. At scale index j = 0, . . . , J and vertex a ∈ V , the spectral graph wavelets
from [58] are given by

ψj,a =
n∑

ℓ=1

√
ϕj(λℓ)vℓ(a)vℓ.

With the matrix representation Φj = diag(
√
ϕj(λ1), . . . ,

√
ϕj(λn)) of these new wavelet

generating functions, the wavelet frame at scale j becomes

Ψj = (ψj,1| . . . |ψj,n) = VΦjV⊤ =
√
ϕj(L).

Proving that the family of wavelets {ψj,a}j,a forms a Parseval frame consists in showing
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that the wavelet frame matrix Ψ = (Ψ0| . . . |ΨJ) is semi-orthogonal:

ΨΨ⊤ =
J∑

j=0
ΨjΨ⊤

j

=
J∑

j=0
VΦjV⊤VΦjV⊤

=
J∑

j=0
VΦjΦjV⊤

= VV⊤ = In.

The second equality is given by the symmetry of the wavelet frame Ψj, the third and last
by the orthogonality of the eigenvector matrix V while the fourth is obtained from the
partition of unity property: ∑J

j=0 ΦjΦj = In.
To build a semi-orthogonal SGWT, the authors of [58] choose a sequence of functions

{ϕj}J
j=0 called a multiscale bandpass filter. It is inspired by [28] which develops a theory

of multiscale frame analysis on very general metric spaces. This construction is known
as a smooth Littlewood-Paley decomposition in the context of functional analysis. Let
ω : R+ → [0, 1] be some continuous function with support in [0, 1], satisfying ω(x) = 1
for x ∈ [0, b−1], for some constant b > 1. For j = 0, . . . , J , the functions ϕj : R+ → [0, 1]
are defined by

ϕj(x) =

ω(x) if j = 0

ω(b−jx)− ω(b−j+1x) if j > 0.

This multiscale bandpass filter forms a partition of unity as the condition∑J
j=0 ϕj(λ) = 1 is

satisfied. For j > 0, each of these functions are supported on respective intervals [bj−2, bj],
which results in the graph wavelets from [58] to be localized in the spectral domain.
Indeed, for a fixed scale index j and all vertices a ∈ V , the spectral graph wavelets ψj,a are
linear combinations of the eigenvectors vℓ associated with the eigenvalues λℓ ∈ [bj−2, bj],
exclusively. Figure 1.6 illustrates an example of a multiscale bandpass filter on the interval
[0, 4] for J + 1 = 4 scales, b = 2 and a particular ω function. The latter is given by
ω(x) = z(x+ 1)z(1− x), where z(x) = y(x)/(y(x) + y(1

2 − x)) and y(x) = e−1/x1{x>0}.
Along with spectral localization, the other property expected from graph wavelets is

to be localized in the vertex domain. Spectral graph wavelets fit this criterion as most
of their energy is centered around the vertex they are defined on. This is observed in
practice on Figure 1.7 where such a wavelet ψj,a at scale indices j = 0, . . . , 3 and vertex
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Figure 1.6 – Multiscale bandpass filter from [58] for 4 scales.

a = 20 of a cycle graph of size 40 is represented. The wavelet generating function used is
the multiscale bandpass filter example given above.
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Figure 1.7 – Spectral graph wavelet from [58] at vertex a = 20 for 4 scales.

Notice how the energy of the spectral graph waveletψj,a is focused on the neighborhood
of vertex a at each scale index j. In addition, we see the latter increases together with
the number of oscillations in each wavelet as a result of their spectral localization. This
clearly illustrates that the parameters j and a in ψj,a are respectively a spectral scale
parameter and a spatial localization parameter.

Figure 1.8 shows the spectral graph wavelet coefficients at first scale index (Wf)(0) =
Ψ⊤

0 f ∈ Rn of a signal f defined on a cycle graph of size n = 40. The wavelet frame Ψ0

is constructed with the wavelet generating function ϕ0 pictured in Figure 1.6.
We can observe that at scale index j = 0, the wavelet transform of a signal acts as a

smoother that reduces its irregularities. This is due to function ϕ0 defined as a low-pass
filter since it is supported on the interval [0, 1] which includes the eigenvalue λ1 = 0
associated with the constant eigenvector v1.
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Figure 1.8 – Spectral graph wavelet coefficients at scale index j = 0 (black) of a graph
signal example (dashed blue).
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Figure 1.9 – Spectral graph wavelet coefficients at scale indices j ≥ 1.

The spectral graph wavelet coefficients of the same graph signal at the remaining scale
indices j ≥ 1 are portrayed on Figure 1.9. With the wavelet generating functions ϕj being
supported on larger eigenvalues, the resulting wavelet transform at these scale indices is
supported by eigenvectors that oscillate more quickly which enhances the decomposition
of the signal.

SGWT polynomial approximation

Direct computation of the SGWT entails functional calculus on the graph Laplacian
matrix L and thus the computation of its eigenvectors and eigenvalues. Identically to the
graph Fourier transform, this limits applications to reasonably sized graphs that have
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less than a few thousand vertices. For larger ones, the computationally expensive eigen-
decomposition can be avoided through a fast transform based on Chebyshev polynomial
approximation. We briefly present this circumvention first introduced by the authors of
the original SGWT [65] and reviewed in [72].

Their approach is to directly approximate the wavelet transform of a graph signal f at
each scale (Wf)(s) = Ψ⊤

s f = g(sL)⊤f ∈ Rn by using a polynomial approximation given
by the truncated Chebyshev polynomial expansion of the functional calculus g(sL). As
these polynomials of L can be computed through simple matrix-vector multiplications,
the approximation is more efficient when L is sparse, in other words, when the graph
contains a small number of edges. An overview of Chebyshev polynomial approximation
can be found in [104], we recall here a basic definition and properties useful for the fast
SGWT.

The Chebyshev polynomials of the first kind Tk(x) are obtained from the stable re-
currence relation Tk(x) = 2xTk−1(x) − Tk−2(x), with T0(x) = 1 and T1(x) = x. For
x ∈ [−1, 1], they satisfy the trigonometric expression Tk(x) = cos(k arccos(x)), which
means that Tk(x) is bounded between −1 and 1 as well. The Chebyshev polynomials
form an orthogonal basis for L2([−1, 1], dx/

√
1− x2), that is, the Hilbert space of square

integrable functions with respect to the measure dx/
√

1− x2.

Any filter ρ : R+ → R+, and thus any wavelet generating function can be approximated
with the truncated polynomial Chebyshev expansion of degree K:

ρK(L) =
K∑

k=0
θk(ρ̃)Tk(L̃),

where θk(ρ̃) is the kth coefficient of the Chebyshev expansion of ρ̃(x) = ρ(λn

2 (x + 1))
and Tk(L̃) is the Chebyshev polynomial of degree k computed for L̃ = 2

λn
L − In. This

transformation of L extends the expansion to any Laplacian matrix by mapping [0, λn]
into [−1, 1]. According to [65], for all filter ρ defined on sp(L) and all signal f , the
approximation ρK(L)f is close to ρ(L)f = (Wf)(s).

The utility of this fast SGWT relies on the efficient computation of Tk(L̃)f whose
computational cost is dominated by a single matrix-vector multiplication by L̃:

Tk(L̃)f = 2L̃
(
Tk−1(L̃)f

)
− Tk−2(L̃)f ,

where T0(L̃) = In and T1(L̃) = L̃. As mentioned above, this polynomial approximation is
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particularly interesting for sparse Laplacian matrices since the computational complexity
of applying L to any vector is proportional to m, the number of edges in the graph. Finally,
the overall complexity of the fast SGWT requires O(mK + n(J + 1)K) operations [65]
which is greatly more efficient than the computationally expensive eigendecomposition of
order O(n3).

While this first approximation is more practical than the direct SGWT, it is sub-
jected to the Gibbs phenomenon. The latter is more or less pronounced depending on the
wavelet generating functions used to form the wavelet frame. Indeed, spectral localization
is improved with functions that properly separate frequencies into distinct decomposition
scales, the most efficient method being to slice the spectrum with indicator functions. As
it is difficult to approximate these with polynomials, most wavelet generating functions
found in the literature reach a compromise between spectral localization and approxima-
tion suitability in the case of large-scale graphs.

A solution to reduce the negative impact of the Gibbs phenomenon on the approxima-
tion error is to include Jackson coefficients gK

k as damping multipliers in the Chebyshev
expansion:

ρK(L) =
K∑

k=0
gK

k θk(ρ̃)Tk(L̃).

An expression of these damping factors can be found in [73], a shorter form proposed in
[34] is given by

gK
k = sin(k + 1)αK

(K + 2) sin(αK) +
(

1− k + 1
K + 2

)
cos(kαK),

where αK = π/(K+2). This Chebyshev-Jackson polynomial approximation reduces Gibbs
oscillations resulting in a better convergence as the degree K increases. We illustrate this
gain on Figure 1.10 where the low-pass filter ϕ0 from Figure 1.6 is approximated with
both standard and damped Chebyshev polynomials of degree K = 20.

On this particular example, we see that the Gibbs phenomenon is greatly reduced by
including the Jackson coefficients in the polynomial approximation.

1.2 Thresholding methods for graph signal denoising

Classical wavelets transforms have been an influential complement to the traditional
Fourier transform as they enable an analysis of a signal into localized oscillating com-
ponents. Consequently, they were proved to be particularly useful in the common signal
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Figure 1.10 – Low-pass filter polynomial approximation

processing application that consists in removing noise from a given signal. Introductions
and references may be found in the books [32], [91] and [66].

A notable denoising method developed by the authors of [40, 39] is based on the
fact that a sparse signal can be represented with only a few wavelets coefficients. On the
contrary, noise cannot be compressed in the wavelet domain considering its erratic nature.
Their procedure is to apply a thresholding process to recover those few signal coefficients.

Analogously, sparsity allows for efficient representation and processing of signals on
graphs. We can thus perform denoising on graph signals using the tools presented in the
previous section. We now review a corresponding procedure that aims to reduce noise by
thresholding the SGWT coefficients, we also present different thresholding processes and
threshold selection methods. This section closes with an introduction to Stein’s unbiased
risk estimate in which we are particularly interested.

1.2.1 Denoising procedure

Let f ∈ Rn be an unknown graph signal that we wish to recover from an observed
signal f̃ . The latter is considered as a noisy variant of the former and their relationship
is described by the following noise corruption model:

f̃ = f + ξ,

where ξ ∼ N (0, σ2In). The noise is thus composed of n independent and identically
distributed Gaussian random variables with variance σ2 added to each coordinate f(i) of
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the original signal.
The purpose of denoising is to build an estimator f̂ of f that depends only on f̃ .

We present here an approach based on the sparse representation of the observed signal
in an appropriate transformed domain. As seen above, the energy of a relatively smooth
graph signal is mostly concentrated in the low frequencies of the spectrum. Therefore, the
projection of this signal on a multiscale frame whose elements are localized in the spectral
domain is itself mainly supported by the lower scales. On the other hand, the energy of
the transformed noise is more distributed along the scales. As a result, the intuition is
to reduce this noise background by applying a thresholding process in the transformed
domain that separates it from the original signal as much as possible.

The spatial and spectral localization properties of the SGWT are particularly useful
to process signals with heterogeneous regularity in the vertex domain compared to other
transforms like the graph Fourier transform. Our denoising procedure consists in thresh-
olding the spectral graph wavelet coefficients of a graph signal in the transformed domain.
This can be viewed as an extension of the classical wavelet methodology from [40, 39] to
the SGWT. It is summarized as follows:

1. Compute the SGWT of the observed signal: Wf̃ = Ψ⊤f̃

2. Apply a given thresholding process h to the coefficients: Wf̂ = h(Wf̃)

3. Compute the inverse SGWT to get an estimate: f̂ =W∗Wf̂

Because the SGWT is a linear operator, the noise corruption model f̃ = f + ξ trans-
lates in the wavelet domain to the following model:

F̃ = F + Ξ,

where F̃ = Wf̃ , F = Wf and Ξ = Wξ are respectively the spectral graph wavelet
coefficients of the noisy signal, original signal and added noise. By linearity, the SGWT
of ξ is also a centered Gaussian random vector whose covariance matrix is given by
V(Ξ) = V(Ψ⊤ξ) = Ψ⊤V(ξ)Ψ = σ2Ψ⊤Ψ. It is important noting that Ψ⊤Ψ is not the
identity matrix but an orthogonal projector of rank n in Rn(J+1) as the wavelet frame Ψ
is only a semi-orthogonal matrix. In other words, the transformed noise Ξ obtained with
the SGWT is both autocorrelated and heteroscedastic contrary to the classical wavelet
transform or the graph Fourier transform which are orthogonal.

This feature is inherent to any localized, multiscale transform due to the overcomplete-
ness of its associated frame, that is, the family of wavelets {ψi}i=1,...,n(J+1) in the case of
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the SGWT. Autocorrelation given by cov(Ξ(i),Ξ(j)) = σ2ψ⊤
i ψj arises from the spectral

graph wavelets encoding the topological information about the neighborhood of their cor-
responding vertex. Since the graph vertices share a common environment, autocorrelation
is particularly notable within each scale and can be present in between. Incidentally, such
correlated graph wavelets find an application in community detection [127] where vertices
that share a similar environment are grouped together. From a spectral point of view, the
graph wavelets of a given scale are naturally expected to be correlated considering they
are linear combinations of the same eigenvectors.

As for hereroscedasticity, the different variance values V(Ξ(i)) = σ2ψ⊤
i ψi = σ2∥ψi∥2

2

are a product of the spectral graph wavelets each having a distinct energy that depends
both on the scale and associated vertex. This heterogeneity of variance is observed on
Figure 1.11 where the SGWT coefficients of the realization of a centered Gaussian random
vector with variance σ2 = 0.04 are illustrated. The graph and wavelet frame are the same
as the ones from the previous examples.
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Figure 1.11 – Spectral graph wavelet coefficients at scale indices j ≥ 1 of a centered
Gaussian random vector realization.

Specifically, we notice that the variability of the noise wavelet coefficients intensifies as
the scale index increases. This configuration where the energy of the transformed noise is
mostly supported by the finer decomposition scales is conducive to an effective separation
between the signal and noise in the wavelet domain. It shows a suitable decomposition
frame is necessary in the first place before attempting to reduce noise.
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1.2.2 Diagonal estimation

The main issue in the denoising procedure described above is to choose an appropriate
thresholding process h in regard to both the noisy signal and the underlying graph. Before
introducing this kind of process, we first present a linear map h : Rn(J+1) → Rn(J+1) which
attenuates or removes individual wavelet coefficients by application of a diagonal matrix:

F̂ = h(F̃ ) = HF̃ ,

where F̂ is the estimator in the wavelet domain and H = diag(h1, . . . , hn(J+1)). The
resulting estimator f̂ =W∗F̂ is fittingly called a diagonal estimator. In the case where the
elements of the diagonal operator H are restricted to hi ∈ {0, 1} for all i = 1, . . . , n(J+1),
the process is equivalent to linear projection.

If the hi are taken in the interval [0, 1] and chosen such that the risk E
[
∥f − f̂∥2

2

]
is minimized, the produced estimator corresponds to the Wiener filter. The attenuating
coefficients hi of this estimator are given by

hi = |F (i)|2
|F (i)|2 + σ2 ,

in which case the risk is minimum [91]:

rinf(f) =
n(J+1)∑

i=1

|F (i)|2σ2

|F (i)|2 + σ2 .

The Wiener filter cannot be computed in practice since it depends on the unknown
signal f and is known as an oracle estimator for this reason. The risk rinf(f) is thus a lower
bound that is unreachable but can be approached with specific thresholding estimators
in the specific case of classical wavelet coefficients.

1.2.3 Thresholding estimation

When the map h is replaced by a thresholding process, the denoising procedure yields
a thresholding estimator in line with the classical wavelet approach from [40, 39]. This
process can either perform coordinatewise or block thresholding. We focus here on coor-
dinatewise thresholding of spectral graph wavelet coefficients. More information on the
block thresholding process can be found in [20] where it is applied in conjunction with
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Chapter 1 – Graph signal processing and application to denoising

the classical wavelet transform and in [86] which extends it to the SGWT.
A coordinatewise thresholding process h is of the form h(x) = (τ(xi, ti))i=1,...,n(J+1)

where the (ti)i=1,...,n(J+1) ∈ Rn(J+1)
+ are threshold values and τ is a thresholding function.

These can be fine-tuned to take into account the transformed noise heteroscedasticity with
a suitable adjustment based on the spectral graph wavelets: t′i = ti

√
V(Ξ(i))/σ = ti∥ψi∥2.

In the case of a uniform threshold along every coefficient: ti = t ∈ R+ for all i, we say
that h is a global thresholding process. When the threshold has different values t0, . . . , tJ
with tj ∈ Rn

+ on each scale j of the transform, the thresholding process is said to be level-
dependent. The lowest scale index j = 0 is usually thresholded contrary to the classical
wavelet methodology where the coefficients of the first decomposition scale are constant.

The most common thresholding functions in the literature are given by

τβ(x, t) = xmax{1− tβ

|x|β
, 0},

with β ≥ 1. Different choices for parameter β produce popular functions that include soft
thresholding (β = 1), James-Stein thresholding (β = 2) and hard thresholding (β = ∞)
which is defined by τ(x, t) = x1{|x|>t}.
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Figure 1.12 – Examples of thresholding functions

These thresholding functions illustrated on Figure 1.12 with a threshold t = 0.5 seek
to extract noise from the signal by removing the small spectral graph wavelet coefficients
and attenuating the large ones. Whereas hard thresholding leaves the wavelet coefficients
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1.2. Thresholding methods for graph signal denoising

unchanged beyond the threshold value, the remaining thresholding functions do decrease
their amplitude and even more so β is small.

1.2.4 Threshold selection

The choice of the threshold values ti is crucial as these determine to what extent the
wavelet coefficients should be attenuated through the thresholding functions presented
above. We now give a few existing methods to select appropriate thresholds.

Universal threshold

As mentioned above, the authors of [40] provide a classical wavelet theorem which
proves that for an appropriate choice of t, the risk of a soft or hard thresholding estimator
is close to the minimum risk of the Wiener filter. This particular global threshold is called
the universal threshold and is given by tuniv = σ

√
2 lnN , where N is the sample size.

It is based on the result [13] that the maximum amplitude of the noise has a very high
probability of being just below tuniv.

This theorem is however conditional on the transformed noise being a decorrelated
and homoscedastic Gaussian random vector, that is, when the frame is orthogonal like in
the case of the classical wavelet transform. Since the SGWT is only semi-orthogonal, the
universal threshold gives no guarantee on the risk of the thresholding estimators presented
above. Furthermore, it should be noted that this threshold is not optimal as the risk can be
reduced in general by choosing a smaller threshold. The minimization of a performance
measure therefore remains an effective strategy to empirically select optimal threshold
values.

Mean squared error

The empirical risk or mean squared error (MSE) is an oracle performance measure
because it depends on the unknown original signal, its minimization thus produces an
oracle estimator. The MSE between the original signal f and the denoised signal f̂ is
given by

MSE(f , f̂) = 1
n
∥f − f̂∥2

2 = 1
n

n∑
i=1

(f(i)− f̂(i))2.

Because the SGWT and its inverse verify Parseval’s identity, the energy of the signal
is preserved in both the vertex and wavelet domains. This means the optimization to
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determine a suitable thresholding process can directly be performed in the transformed
domain of the wavelet coefficients. Indeed, we have

∥f − f̂∥2
2 = ∥f −W∗h(Wf̃)∥2

2

= ∥W∗(Wf − h(Wf̃))∥2
2

= ∥Wf − h(Wf̃)∥2
2

= ∥F − h(F̃ )∥2
2

= ∥F − F̂ ∥2
2.

As a result, it is not necessary to apply the inverse SGWT at each optimizing step in
order to evaluate the empirical performance of the estimator f̂ in the vertex domain.
This significantly reduces the complexity of the optimization process and grants more
resources towards parameter tuning.

Stein’s unbiased risk estimate

The MSE can be substituted with another performance measure called Stein’s unbiased
risk estimate (SURE). Introduced by [121], it estimates with no bias the risk of a nearly
arbitrary, nonlinear biased estimator and only depends on the noisy signal and the noise
variance. SURE has been used in the literature [39] as the optimization criterion of a
thresholding estimator with classical wavelet coefficients and is extendable to the SGWT
according to the following theorem from [86].

Theorem 1.2.1 (h-SURE). Let h be a weakly differentiable thresholding process for the
denoising problem F̃ = F + Ξ. Then the theoretical risk is given by

E
[
∥F − h(F̃ )∥2

2

]
= E

−nσ2 + ∥F̃ − h(F̃ )∥2
2 + 2σ2

n(J+1)∑
i,j=1

γij∂jhi(F̃ )
 ,

where γij = (Ψ⊤Ψ)ij and hi is the ith component of h.

Once a thresholding process h is chosen and the noise variance σ2 is estimated or
known, SURE of h in the transformed domain reads as

SURE(h) = −nσ2 + ∥F̃ − h(F̃ )∥2
2 + 2σ2

n(J+1)∑
i,j=1

γij∂jhi(F̃ ).
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1.2. Thresholding methods for graph signal denoising

This performance measure is defined for any weakly differentiable thresholding process
which covers both diagonal estimators and thresholding estimators with the exception of
hard thresholding. In particular, when h is a coordinatewise thresholding process that
applies the thresholding function τβ with β ∈ [1,∞) to each wavelet coefficient, the
formula becomes

SURE(h) = −nσ2 +
n(J+1)∑

i=1
F̃ (i)2

[
1 ∧ tβi
|F̃ (i)|β

]2

+ 2σ2
n(J+1)∑

i=1
γii

[
1 + (β − 1)tβi

|F̃ (i)|β

]
1[ti,∞)(|F̃ (i)|).

Despite the fact the SURE performance measure does not depend on the original
signal, its expression includes the noise variance σ2. In the case where it is not known for
a particular application, we present here a naive estimator from [86] and [87] which stems
from the following observation:

E
[
f̃⊤Lf̃

]
= f⊤Lf + E

[
ξ⊤Lξ

]
= S2(f) + σ2 tr(L),

where S2(f) is the Laplacian quadratic form presented in Section 1.1.1 that measures the
smoothness of f . If the original signal is relatively smooth such that S2(f) is negligible
compared to tr(L), the noise variance can reasonably be approximated with the biased
estimator

σ̂2 = f̃⊤Lf̃
tr(L) =

∑
{i,j}∈E wij(f̃(i)− f̃(j))2∑n

i,j=1 wij

.

This quantity corresponds to a graph analogue of the von Neumann estimator [130]. It
has the benefit of only relying on known values but suffers from a bias strongly dependent
on the underlying signal smoothness.

Figure 1.13 shows a comparison between minimizing the MSE and SURE for different
threshold values. The graph signal and noise coefficients are the ones from Figures 1.8, 1.9
and 1.11. Noise is reduced by coordinatewise soft thresholding where a global threshold t
is applied to all spectral graph wavelet coefficients.

Although the risk is overestimated by SURE here, the optimal threshold value is
relatively close to the one obtained with the oracle estimator which minimizes the MSE.

Lastly, an important limitation is the numerical complexity regarding the weights
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Figure 1.13 – MSE and SURE minimization

γij = (Ψ⊤Ψ)ij contained in the SURE formula. They entirely depend on the wavelet
frame matrix and thus the computationally expensive eigendecomposition of the graph
Laplacian matrix L. For this reason, directly computing SURE is not tractable for signals
defined on large graphs.

A solution is to take advantage of their relationship with the covariance between
transformed Gaussian random vectors: γij = cov(Ξ(i),Ξ(j))/σ2. By combining the SGWT
polynomial approximation presented in Section 1.1.3 with the Monte Carlo method, it is
possible to estimate these weights before plugging them in the SURE expression. A more
detailed presentation and evaluation of this approach is given in Chapter 3.
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Chapter 2

DIFFERENTIAL PRIVACY AND

APPLICATION TO GRAPHS

In this chapter, we focus on the research field of differential privacy, its use in industry,
and possible applications to graphs. This first section introduces different definitions of
differential privacy, some mechanisms for achieving it, and interesting properties about
their composition. In particular, differential privacy guarantees remain unaffected by any
post-processing such as the denoising procedure presented in the previous chapter. In a
second section, we present how differential privacy is used in industry and some of its
applications to graphs.

2.1 Introduction to differential privacy

2.1.1 Pure differential privacy

In this subsection, we give the initial definition of ε-differential privacy proposed by
the authors of [46, 43], present a few common privacy mechanisms that fall within and
summarize some interesting properties.

Definition

Suppose a number of m individuals each owns a piece of sensitive information we wish
to use for statistical analysis and protect at the same time through a privacy mechanism.
We model these private data as a random vector (X1, . . . , Xm) where each component
Xi is a random variable. This information is collected in a dataset X = (X1, . . . , Xm)
that serves as an input to the privacy mechanism M which returns a sanitized output
Z = (Z1, . . . , Zk) = M(X) that preserves the privacy of each individual. This output can
be of different size from the protected dataset. For instance, a sanitized summary statistic
corresponds to a single released value (k = 1) while a sanitized version of the whole dataset
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is the same size (k = m). Let (Xm,Am) and (Z,B) be the measurable spaces where X
and Z respectively take values. The privacy mechanism distribution Q(·|X) corresponds
to the conditional distribution of Z given X and is supposed regular. That is, the map
Q(·|·) : B × Xm → [0, 1] satisfies (i) for all x ∈ Xm, Q(·|x) is a probability measure on
(Z,B) and (ii) for all B ∈ B, Q(B|·) is Am-measurable. Thus, Q is a Markov kernel.

To define differential privacy, we need a measure of distance between two datasets
that gives the number of entries in which they differ. The Hamming distance fulfills this
function when applied to two datasets X,X ′ of same size m, we define it as follows:
d(X,X ′) := #{i ∈ {1, . . . ,m} | Xi ̸= X ′

i}. When d(X,X ′) = 1, the datasets differ in one
entry and are said to be adjacent.

We now give the formal definition of ε-differential privacy (or pure differential privacy)
first introduced in [46].

Definition 2.1.1 (ε-differential privacy). Let ε ≥ 0. The privacy mechanism M is said
to satisfy ε-differential privacy if

Q(B|x) ≤ eεQ(B|x′), ∀B ∈ B, ∀x, x′ ∈ Xm : d(x, x′) = 1.

The intuition behind this definition is that the distribution Q(·|X) of the sanitized
output Z does not change much when the observed dataset x is altered on a single entry xi.
In other words, differential privacy ensures the inclusion or removal of any given individual
has a negligible impact on the privacy mechanism results. As such, the promise is that
their private information is protected as their participation does not make too much of a
difference.

In the case of ε-differential privacy, this variation in the output distribution is bounded
from above by eε. As this quantity comes close to 1, the distributions behave similarly and
the privacy guarantee is stronger. The privacy parameter ε (also called privacy budget)
thus indicates how much privacy-preserving the mechanism M is: the closer it is to 0, the
safer is the sensitive information. This measure of privacy is a helpful tool when comparing
different mechanisms. For instance, one can choose a method that provides better privacy
among several with similar performance.

This standard definition uses the Hamming distance to control that X and X ′ are
adjacent input datasets. Alternative definitions of differential privacy can be formulated
with different notions of adjacency. Furthermore, extending the distance to an arbitrary
metric is a way to generalize differential privacy to domains other than datasets [22].
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2.1. Introduction to differential privacy

In practice, differential privacy is achieved by introducing randomness in the process.
We now present a first ε-differentially private mechanism and observe how the degrees of
randomness and privacy relate to each other.

Randomized response

Assume you wish to survey a population to estimate the proportion of people who
have a certain property. If the latter is associated with embarrassing or illegal behavior,
the participants may be reluctant to give an honest answer. This can result in a biased
estimate due to untruthful responses or even refusal of being surveyed. A solution proposed
by [135] consists in randomizing the response of the participant to guarantee their privacy.
One way to perform this is by letting the respondent answer honestly or lie depending on
the result of a random experiment. We give an example of such a randomized response
mechanism.

Example 2.1.1. Participants are asked to follow this procedure before answering whether
they have the property of interest:

1. Roll a die

2. If the result is between 1 and 4, then respond truthfully.

3. If the result is 5 or 6, then lie.

With this method, it is not possible to know if a given respondent has the property
since there is a chance they made a wrong statement. The randomized response mechanism
gives them plausible deniability as they can rightfully claim the die modified their true
answer. Although the information is uncertain on the individual level, it is still possible to
estimate the true proportion of the population. Indeed, the randomness in the procedure
having known results and corresponding probabilities, we can use a statistical model for
this purpose.

LetX be a random variable which takes the value 1 with probability p if the participant
has the property of interest and 0 otherwise. This corresponds to a Bernoulli distribution
with parameter p that represents the proportion we want to estimate: X ∼ Bernoulli(p).
Let another random variable Y be the result of the die roll that follows a discrete uniform
distribution: Y ∼ U{1,6}. Finally, the answer given by the respondent at the end of the
procedure is represented by a third random variable Z = X1{Y ≤4} + (1−X)1{Y >4} which
takes the value 1 if the final answer is “Yes” and 0 if “No” is given. To better visualize
the randomized response mechanism, Figure 2.1 represents its associated tree diagram.
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Figure 2.1 – Randomized response tree diagram

As X and Y are independent, we can easily compute the probability of a participant
answering “Yes”: P(Z = 1) = P(X = 1)P(Y ≤ 4) + P(X = 0)P(Y > 4) = 2p

3 + 1−p
3 = 1+p

3 .
The random variable Z thus also follows a Bernoulli distribution with parameter and ex-
pected value 1+p

3 . If m individuals are surveyed with this procedure, we obtain a random
sample Z1, . . . , Zm of responses whose sample mean Z̄m = 1

m

∑m
i=1 Zi is a consistent esti-

mator of 1+p
3 according to the law of large numbers. With the appropriate transformation,

we can therefore directly estimate the proportion p with 3Z̄m − 1.

This example shows how the randomized response mechanism protects the private
data X1, . . . , Xm from disclosure and at the same time makes estimation from the sani-
tized output Z1, . . . , Zm possible. While this method was introduced more than 40 years
before ε-differential privacy, it does fit its definition. Theoretical analysis under differen-
tial privacy of this mechanism and its variants has been conducted since, see for example
[136] and [133].

We can determine the privacy budget ε for the specific randomized response example
presented above by first computing the probabilities Q(z|x) = P(Z = z|X = x) for
z, x ∈ {0, 1}:

P(Z = 1|X = 1) = P(Z = 0|X = 0) = P(Y ≤ 4) = 2/3,

P(Z = 1|X = 0) = P(Z = 0|X = 1) = P(Y > 4) = 1/3.
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Then, we have the probability ratios

P(Z = 1|X = 1)
P(Z = 1|X = 0) = P(Z = 0|X = 0)

P(Z = 0|X = 1) = 2/3
1/3 = 2.

This gives the upper bound

Q(z|x)
Q(z|x′) ≤ eln 2, ∀z ∈ {0, 1}, ∀x, x′ ∈ {0, 1} : d(x, x′) = 1.

As a result, this randomized response mechanism provides ln(2)-differential privacy.

Let us see how the privacy budget ε behaves when the randomness in the mechanism
changes. Suppose now the participants are asked to lie only if they roll a 6. In this case the
distribution of Z is modified and the privacy budget becomes ln 5/6

1/6 = ln 5. This higher
value of ε corresponds to a lower degree of privacy as the respondents are more likely
to make a true statement. On the other hand, the estimator of the proportion p benefits
from a smaller variance since more information is collected over the m individuals.

We can better study the relationship between privacy and noise in this mechanism by
writing T the random variable which takes the value 1 if the participant answers truthfully
and 0 if not. We generalize the probability of a honest answer being given to π so that
T ∼ Bernoulli(π). For π ∈ [1

2 , 1], the privacy budget is given by ε = ln P(T =1)
P(T =0) = ln π

1−π
. As

π approaches 1, the procedure comes closer to a regular survey with no privacy protection
and ε tends to ∞. In that situation, the answers give the most information and the
proportion estimator has the lowest variance. If instead, the respondents are asked to tell
the truth half the time on average (π = 1

2) with a coin toss for example, then privacy is at
its highest degree with ε = 0. No information is revealed from the responses as they are
no longer related to the proportion p : P(Z = 1) = 1

2 . Statistical analysis in this extreme
case is impossible because the sanitized data are useless. Note that for π ∈ [0, 1

2 ], the
degree of privacy becomes ε = ln 1−π

π
and thus behaves the same as π goes from 1

2 to 0.
The privacy budget here depends in fact on the variance of T given by V(T ) = π(1− π)
which measures the amount of noise in the procedure.

In general, the more randomness there is in a privacy mechanism, the more protection
it provides to the sensitive data. The randomized response example above also shows
that this relationship necessarily implies a compromise between statistical utility and
privacy. Caution must be taken when sanitizing data so that enough relevant information
is preserved in the process.
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Laplace mechanism

Besides binary data, differential privacy can also be used to sanitize numeric queries on
datasets. For instance, we can be interested by the empirical means of the n variables of a
dataset composed of m individuals. Assuming the results of the queries are real-valued, we
want to protect the output f(X), where f : Xm → Rk is the query function. The Laplace
mechanism [46] does so by adding noise drawn from a centered Laplace distribution whose
scale is calibrated to a quantity called the ℓ1-sensitivity of f .

Definition 2.1.2 (ℓ1-sensitivity). The ℓ1-sensitivity of a function f : Xm → Rk is

∆1f = max
x,x′∈X m

d(x,x′)=1

∥f(x)− f(x′)∥1.

As it appears from this definition, this value measures how much a single entry from
any dataset can affect the query result at most. That is, the biggest difference we can
obtain in the output by including or removing an individual. Note that the ℓ1-sensitivity
does not depend on the observed dataset, it is a theoretical quantity intrinsic to the func-
tion f . This gives an upper bound on the amount of randomness that must be introduced
by the mechanism to preserve privacy. Indeed, if the added noise is enough to protect
against the largest shift an individual can cause, then all of them are covered.

Example 2.1.2. We now provide a few examples of ℓ1-sensitivity for usual queries on
datasets.

— Count: “How many women are there in the dataset?”
A counting query counts the number of dataset entries that have a certain property.
It can be seen as a sum f(x) = ∑m

i=1 xi where x ∈ Xm = {0, 1}m.

∆1f = max
∣∣∣∣∣

m∑
i=1

xi −
m∑

i=1
x′

i

∣∣∣∣∣ = max
∣∣∣xi0 − x′

i0

∣∣∣ = 1, for some i0 ∈ {1, . . . ,m}.

— Sum: “What is the total income of all people in the dataset?”
If there is no information on the range of values an attribute x ∈ Rm can take, the
resulting sensitivity of f(x) = ∑m

i=1 xi is unbounded: ∆1f = max |xi0−x′
i0| = +∞.

When the xi are known to lie in an interval [a, b], the sensitivity is ∆1f = b− a.
— Average: “What is the average screen time of all users in the dataset?”

For Xm = [a, b]m, the potential impact of each individual on the averaging query
f(x) = 1

m

∑m
i=1 xi depends on the dataset size: ∆1f = max 1

m
|xi0 − x′

i0| =
b−a
m

.
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These examples show that prior knowledge or hypotheses on the range of possible
values are necessary to bound the sensitivity of some queries. Reasonable intervals can
be found in some cases (ex: body height or a specific time) while in others it might be
more difficult (ex: market capitalization of a company). A solution is to enforce lower
and upper bounds by clipping the data we wish to protect at the cost of losing statistical
utility. Removing extreme values is an effective way to reduce the sensitivity and thus the
amount of noise needed to ensure privacy. However, the chosen interval must not depend
on the private data otherwise the differential privacy guarantee would be degraded as
the bounds themselves could reveal something about the data. In practice, the clipping
bounds are hyperparameters of the privacy mechanism tuned according to preexisting
knowledge on the data when available.

The ℓ1 distance between the query results was purposely chosen to go with the Laplace
distribution. The probability density function of a centered Laplace distribution with scale
b is given by g(y) = (1/2b) exp(−|y|/b) and we write Y ∼ Lap(b).

Definition 2.1.3 (Laplace mechanism). Given any function f : Xm → Rk, the Laplace
mechanism is defined as:

Z = f(X) + Y,

where Y = (Y1, . . . , Yk) and Yj
i.i.d.∼ Lap(∆1f/ε).

This mechanism can be proven to satisfy ε-differential privacy by showing that the
distributions Q(·|X) and Q(·|X ′) are close in the sense of Definition 2.1.1. Let q(z|x)
denote the probability density function of Z given X = x, for all z ∈ Rk it reads:

q(z|x) =
k∏

j=1

ε

2∆1f
exp

(
−ε|zj − f(x)j|

∆1f

)
.
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Thus, for all x, x′ ∈ Xm such that d(x, x′) = 1, we have the ratio

q(z|x)
q(z|x′) =

k∏
j=1

exp
(
ε(|zj − f(x′)j| − |zj − f(x)j|)

∆1f

)

≤
k∏

j=1
exp

(
ε|f(x)j − f(x′)j|

∆1f

)

= exp
(
ε∥f(x)− f(x′)∥1

∆1f

)

≤ exp
(
ε∆1f

∆1f

)
= exp(ε),

where the first inequality is given by the triangle inequality and the second by the sensi-
tivity bound ∥f(x)−f(x′)∥1 ≤ ∆1f . Symmetrically, we can find the lower bound exp(−ε).

Properties

Differential privacy has several attractive properties that are useful when designing
more complex privacy mechanisms. We present here three of them: sequential composition,
parallel composition and post-processing. Finally, we mention a few studies about the
statistical properties of differential privacy.

Statistical analysis often requires to consult the data multiple times. The sequential
composition property of differential privacy exactly quantifies the privacy degree of a
sequence of privacy mechanisms. The first sequential composition theorem for differential
privacy was introduced by [47, Theorem 1], a more complete one is given in [44, Theorem
3.14, Corollary 3.15].

Theorem 2.1.1 (Sequential composition). If each privacy mechanism Mj(X), chosen se-
quentially or adaptively, satisfies εj-differential privacy for j = 1, . . . , k, then the sequence
M(X) = (M1(X), . . . ,Mk(X)) satisfies (∑k

j=1 εj)-differential privacy.

As one would expect, the privacy guarantee degrades as the same dataset X appears
several times in the sequence. The main convenience of differential privacy is the additive
accumulation of the privacy budgets in the worst case.

Example 2.1.3 (Average and variance). This property is particularly useful when multi-
ple differentially private statistics are simultaneously released. Suppose we are interested
in both the average f1(x) = 1

m

∑m
i=1 xi and variance f2(x) = ∑m

i=1
1
m

(xi − f1(x))2 of an
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attribute x ∈ Xm. Sanitized versions M1(X) and M2(X) of these queries can be obtained
by adding Laplace noise such that they each satisfy ε-differential privacy. According to
sequential composition, the mechanism M(X) = (M1(X),M2(X)) which releases both
statistics is 2ε-differentially private. This guarantee is valid whether the sanitized variance
is computed independently from the sanitized average or uses its output: M2(X,M1(X)).

The privacy bound can be further improved when the dataset domain is partitioned
into disjoint sets. If different privacy mechanisms are run on these subsets of data, parallel
composition ensures the privacy guarantee of their sequence is limited by the weakest of
each mechanism. The following theorem was proven for ε-differential privacy by [94].

Theorem 2.1.2 (Parallel composition). Let Xj be arbitrary disjoint subsets of the input
dataset domain Xm such that ⋃k

j=1Xm
j = Xm. If each privacy mechanism Mj(Xj) satisfies

εj-differential privacy for j = 1, . . . , k with Xj = X ∩ Xm
j , then the sequence M(X) =

(M1(X1), . . . ,Mk(Xk)) satisfies (maxj εj)-differential privacy.

As the information of each individual is used only once in the sequence of mechanisms,
the privacy budget does not depend on their total number. The collective upper bound is
thus given by the maximum budget value which separately covers all the subsets of data.

Example 2.1.4 (Histogram). This property finds an application when releasing a differ-
entially private histogram. Suppose a number of k functions fj(x) = ∑m

i=1 1{xi∈Xj} count
how many entries belong to each bin Xj. Considering these functions are counting queries
with equal ℓ1-sensitivities ∆1fj = 1, we can use the Laplace mechanism to obtain the
sanitized bin counts Zj = fj(X) + Yj, where Yj

i.i.d.∼ Lap(1/ε). Since each of them pro-
vides ε-differential privacy and every dataset entry Xi necessarily fall into exactly one
bin, parallel composition guarantees the sanitized histogram Z = (Z1, . . . , Zk) is also
ε-differentially private.

Another valuable aspect of differential privacy is its property to remain unaffected by
any post-processing of the sanitized output [44, Proposition 2.1]. As long as no additional
knowledge about the private data is used, manipulating the results of a privacy mechanism
cannot degrade the privacy guarantee.

Proposition 2.1.3 (Post-processing). Let g : Z → Z ′ be an arbitrary randomized func-
tion. If the privacy mechanism M(X) satisfies ε-differential privacy, then the composition
g(M(X)) also satisfies ε-differential privacy.
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This immunity to post-processing is particularly useful as it permits the application
of denoising methods to the sanitized output with no loss of privacy. In this manner, the
statistical utility lost in the sanitization process can be partially recovered by reducing
the introduced noise.

In addition, differential privacy also features statistical properties. A few articles have
studied statistical inference problems under differential privacy constraints. Research on
this topic comprises [137, 117, 118, 63] and more recently [21].

The trade-off between statistical accuracy and privacy mentioned above is investigated
in [21] for mean estimation and linear regression. In [63], methods to sanitize functional
data are developed and kernel density estimation is discussed as the main example. The
authors of [117] show that in some parametric problems, it is possible to build a differen-
tially private estimator whose distribution converges to that of the maximum likelihood
estimator. Specifically, this sanitized estimator is efficient and asymptotically unbiased.
They show afterward in [118] that different point estimators can satisfy differential privacy
with asymptotically optimal parametric rates of convergence.

In [137], the authors present differential privacy through the lens of statistics. In par-
ticular, they compare different privacy mechanisms by computing the rate of convergence
of distributions and densities based on the sanitized data. This article also initiated non-
parametric density estimation under differentially privacy constraints. Notably, it studies
the differentially private estimation of Lipschitz-continuous density functions through his-
tograms perturbed with Laplace noise. Furthermore, the authors provide an hypothesis
testing interpretation of ε-differential privacy with the following result [137, Theorem 2.4].

Theorem 2.1.4. Suppose the sanitized data Z, distribution of the private data X and
ε-differentially private mechanism M are known. If d(X,X ′) = 1, any test of significance
level γ of H0 : Z ∼ Q(·|X) against H1 : Z ∼ Q(·|X ′) has power bounded above by γeε.

This means that given the full knowledge of every entry of the private dataset X
except one Xi, how these data were sanitized through the privacy mechanism M and
the sanitized output Z, it is virtually impossible to determine whether Xi belongs to a
particular individual because the power of such a test is nearly equal to its level.

2.1.2 Approximate differential privacy

We introduce in this subsection the broader definition of (ε, δ)-differential privacy in
which we are interested in this dissertation, as well as some of its strengths and weaknesses.
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We then present two privacy mechanisms that satisfy it: the classical Gaussian mechanism
and the analytic Gaussian mechanism which requires less noise for the same privacy
guarantee.

Definition

Different relaxations of differential privacy have been proposed since the introduction
of ε-differential privacy. The most common and popular one, named (ε, δ)-differential
privacy [47], simply introduces an additive parameter δ in the inequality of Definition
2.1.1 to consider more privacy mechanisms that cannot meet pure differential privacy.

Definition 2.1.4 ((ε, δ)-differential privacy). Let ε, δ ≥ 0. The privacy mechanism M is
said to satisfy (ε, δ)-differential privacy if

Q(B|x) ≤ eεQ(B|x′) + δ, ∀B ∈ B, ∀x, x′ ∈ Xm : d(x, x′) = 1.

The inclusion of this new privacy parameter permits a failure of the ε-differential
privacy promise with probability δ. Intuitively, a value δ ≥ 1 voids the guarantee for
any privacy budget ε while δ = 0 yields the standard definition of ε-differential privacy.
For δ ∈ (0, 1), a (ε, δ)-differentially private mechanism has a probability 1 − δ to satisfy
ε-differential privacy and a remaining probability δ to provide a weaker to no guarantee
at all. For instance, a mechanism that randomly releases one dataset entry is (0, 1/m)-
differentially private, where m is the number of individuals. To guard against any chance
of private information disclosure, the privacy parameter is required to be very small. The
authors of [93] discussed meaningful values for the δ parameter and showed that δ ≪ 1/m
is a necessary condition.

This approximate differential privacy shares similar properties with pure differential
privacy such as sequential composition [44, Theorem 3.16] where the privacy parameters
δj accumulate additively in the same way as the privacy budgets εj.

Theorem 2.1.5 (Sequential composition). If each privacy mechanism Mj(X), chosen
sequentially or adaptively, satisfies (εj, δj)-differential privacy for j = 1, . . . , k, then the
sequence M(X) = (M1(X), . . . ,Mk(X)) satisfies (∑k

j=1 εj,
∑k

j=1 δj)-differential privacy.

Along with parallel composition and post-processing, approximate differential privacy
also benefits from an advanced composition theorem [45, Theorem III.3] which gives a
lower bound on the privacy budget ε for a slightly larger value of δ. It applies for sequences
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of mechanisms M1, . . . ,Mk obtained from k-fold adaptive composition: each mechanism
Mj adapts to the outputs of previous mechanisms M1, . . . ,Mi−1 and the input to each
mechanism is composed of the private dataset X and the outputs of previous mechanisms.

Theorem 2.1.6 (Advanced composition). If each privacy mechanism Mj(X) satisfies
(ε, δ)-differential privacy for j = 1, . . . , k, then for all δ′ > 0, their k-fold adaptive com-
position satisfies (ε′, kδ + δ′)-differential privacy, where ε′ =

√
2k ln(1/δ′)ε+ kε(eε − 1).

Gaussian mechanism

The initial motivation for the (ε, δ)-differential privacy relaxation was to use noise
drawn from a Gaussian distribution to sanitize a query output f(X). Among the benefits
of such a privacy mechanism, we can note the faster decay of the Gaussian distribution
tails compared to those of the Laplace distribution. In addition, the inherent error in the
dataset attributes or resulting from the query (ex: average) may itself be Gaussian.

Definition 2.1.5 (Gaussian mechanism). Given any function f : Xm → Rk, the Gaussian
mechanism is defined as:

Z = f(X) + Y,

where Y = (Y1, . . . , Yk) and Yj
i.i.d.∼ N (0, σ2).

The probability density function of Z given X = x, for all z ∈ Rk reads:

q(z|x) =
k∏

j=1

1
σ
√

2π
exp

{
−(zj − f(x)j)2

2σ2

}
.

Contrary to the Laplace mechanism, no distance appears in this expression and thus the
triangle inequality cannot be used to find an upper bound for the ratio q(z|x)/q(z|x′).
For this reason, the Gaussian mechanism does not meet ε-differential privacy for any
privacy budget ε but instead satisfies (ε, δ)-differential privacy. To fit the definition of
approximate differential privacy, the standard deviation σ of the added noise is calibrated
to the ℓ2-sensitivity of the function f in place of the ℓ1-sensitivity.

Definition 2.1.6 (ℓ2-sensitivity). The ℓ2-sensitivity of a function f : Xm → Rk is

∆2f = max
x,x′∈X m

d(x,x′)=1

∥f(x)− f(x′)∥2.
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Given that the ℓ2 distance is smaller than the ℓ1 distance for k ≥ 2, the corresponding
ℓ2-sensitivity has a lower value for the same function f . The original (or classical) Gaussian
mechanism [47] uses a Gaussian tail approximation to obtain a bound for the standard
deviation:

Theorem 2.1.7 (Classical Gaussian mechanism). For any ε, δ ∈ (0, 1), the Gaussian
mechanism satisfies (ε, δ)-differential privacy if σ ≥ ∆2f

√
2 ln(1.25/δ)/ε.

Note that this formula only holds for values of ε smaller than 1, which are generally
considered as decent privacy guarantees. In [7], the authors show that the rate σ =
Θ(1/ε) cannot be extended beyond the interval (0, 1) to the low privacy regime. They also
prove that this value of σ is not optimal in the high privacy regime and can be further
improved to reduce the amount of noise needed to achieve the same degree of privacy. Their
approach uses numerical evaluations of the Gaussian cumulative distribution function
Φ(x) = P(N (0, 1) ≤ x) to determine an optimal variance and define an analytic Gaussian
mechanism.

Theorem 2.1.8 (Analytic Gaussian mechanism). For any ε ≥ 0 and δ ∈ [0, 1], the
Gaussian mechanism satisfies (ε, δ)-differential privacy if and only if

Φ
(

∆2f

2σ −
εσ

∆2f

)
− eεΦ

(
−∆2f

2σ −
εσ

∆2f

)
≤ δ.

Privacy profiles

The guarantee provided by approximate differential privacy depends on the values of
the privacy parameters ε and δ whose choice is nontrivial. In the case of pure differential
privacy (δ = 0), selecting an appropriate value for ε is possible given a practical privacy
standard and the knowledge of the dataset domain along with the query function [79].
Furthermore, an optimal choice for δ can be determined for each value of ε with the
privacy profile of a mechanism that we now present.

As it can be seen in theorems 2.1.7 and 2.1.8, the required inequalities for approximate
differential privacy to be met both establish a relationship between the privacy parameters
ε and δ. This shows that it is possible to decrease one and accordingly increase the
other while maintaining a differential privacy guarantee for the Gaussian mechanism.
The advanced composition theorem presented above indicates that a similar trade-off
can be obtained for every (ε, δ)-differentially private mechanisms. Consequently, a single
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mechanism actually satisfies a curve of (ε, δ)-differential privacy guarantees that contains
an infinity of valid privacy parameter settings.

This more complete characterization of a mechanism privacy properties is found in
the privacy profiles proposed by the authors of [6]. Their method captures the entire set
of privacy guarantees satisfied by a given mechanism M using a function δM(ε) defined
as follows:

Definition 2.1.7 (Privacy profile). The privacy profile of a mechanism M is the function
δM : [0,∞)→ [0, 1] given by

δM(ε) = sup
x,x′∈X m

d(x,x′)=1

sup
B∈B

(Q(B|x)− eεQ(B|x′)).

For each privacy budget ε ≥ 0, the privacy profile δM returns the smallest privacy
parameter δ ∈ [0, 1] that can be achieved under the definition of approximate differential
privacy. This function thus defines a curve in the privacy parameter space [0,∞)× [0, 1]
that separates the values (ε, δ) above it for which differential privacy is satisfied by the
mechanism M and the ones below it where no guarantee can be given.

Mechanisms that satisfy pure differential privacy also have a privacy profile as they
are (ε, δ)-differentially private with δ = 0 for some value of ε. This is illustrated in Figure
2.2 from [6] where the privacy profiles of the randomized response, Laplace and analytic
Gaussian mechanisms are represented for some parameter setting that gives the same
intercept δM(0) for each one.

Note that the privacy profile of the randomized response and Laplace mechanisms
both reach a plateau δ = 0 when the privacy budget meets the required value for pure
differential privacy to be satisfied, respectively ε ≥ ln π

1−π
and ε ≥ ∆1f

b
. For smaller

privacy budgets, a larger value of δ given by the privacy profile is necessary to preserve
the differential privacy guarantee.

2.1.3 Other relaxations of differential privacy

We now present two different relaxations of differential privacy which are Rényi dif-
ferential privacy [95] and f -differential privacy [36]. These are based on alternative ways
to measure the similarity between the two distributions Q(·|X) and Q(·|X ′).
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Figure 2.2 – Privacy profiles of the randomized response (RR), Laplace and Gaussian
mechanisms. Parameters are chosen such that δM(ε) = 0.4 at ε = 0.

Rényi differential privacy

Another relaxed definition of pure differential privacy proposed by [95] is Rényi differ-
ential privacy. In comparison to approximate differential privacy, it is a stronger privacy
definition based on the Rényi divergence [109] to measure the similarity between Q(·|X)
and Q(·|X ′). Let P1 and P2 be two distributions on a measurable space (Z,B) with re-
spective densities p1 and p2 dominated by a common measure µ. The Rényi divergence of
orders 1 < α <∞ and α =∞ of P1 from P2 are respectively defined as

Dα(P1 ∥ P2) = 1
α− 1 ln

{∫ (
p1(z)
p2(z)

)α

p2(z)dµ(z)
}
,

D∞(P1 ∥ P2) = ln
{

sup
B∈B

P1(B)
P2(B)

}
.

We observe that the Rényi divergence with α =∞ is closely related to the definition
of pure differential privacy. Indeed, a privacy mechanism M is ε-differentially private if
and only if its distribution Q(·|X) satisfies

D∞(Q(·|x) ∥ Q(·|x′)) ≤ ε, ∀x, x′ ∈ Xm : d(x, x′) = 1.

Rényi differential privacy relaxes this definition by using the Rényi divergence of order
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1 < α <∞. Concretely, a privacy mechanism M is said to satisfy (α, ε)-Rényi differential
privacy with α > 1 if

Dα(Q(·|x) ∥ Q(·|x′)) ≤ ε, ∀x, x′ ∈ Xm : d(x, x′) = 1.

This relaxed definition of privacy benefits from common properties shared with pure
differential privacy. In particular, it is preserved under adaptive sequential composition
and is immune to post-processing. In addition, if a privacy mechanism provides (α, ε)-
Rényi differential privacy, it also satisfies (ε+ ln 1/δ

α−1 , δ)-differential privacy for any δ ∈ (0, 1).
Finally, the Gaussian mechanism as defined above satisfies (α, α/2σ2)-Rényi differential
privacy if ∆2f = 1.

f-differential privacy

Whereas Rényi differential privacy is a divergence based relaxation of differential pri-
vacy, f -differential privacy introduced by [36] is inspired by the hypothesis testing for-
mulation of privacy. This statistical point of view considers the problem of distinguishing
between the datasets X and X ′ from the perspective of an attacker:

H0 : P = P0 versus H1 : P = P1,

where P0 and P1 are the distributions of the privacy mechanisms M(X) and M(X ′),
respectively. The result of the mechanism is taken as input for the rejection rule ϕ ∈ [0, 1]
and its type I and type II errors are respectively given by

αϕ = EP0 [ϕ], βϕ = 1− EP1 [ϕ].

The authors characterize the trade-off between these two errors through the function
T (P0, P1) : [0, 1]→ [0, 1] defined as

T (P0, P1)(α) = inf
ϕ
{βϕ : αϕ ≤ α},

where the infimum is taken over all rejection rules. The greater this function is, the harder
it is to distinguish between the distributions P0 and P1.

Let f : [0, 1]→ [0, 1] be a trade-off function equal to T (P0, P1) for some distributions

62



2.2. Differential privacy applications

P0 and P1, the privacy mechanism M is said to satisfy f -differential privacy if

T (Q(·|X), Q(·|X ′)) ≥ f,

for all datasets X and X ′ such that d(X,X ′) = 1. This generalization of differential
privacy thus states that testing H0 : M(X) ∼ Q(·|X) against H1 : M(X) ∼ Q(·|X ′) is at
least as difficult as distinguishing P0 from P1 at any level of type I error.

Contrary to the differential privacy definitions parameterized by real values (ε, δ, α)
presented above, this approach is parameterized by a function f and offers a complete
characterization of privacy comparable to privacy profiles. Moreover, this relaxed defini-
tion of pure differential privacy is a generalization of approximate differential privacy as
well. Lastly, f -differential privacy benefits from immunity to post-processing and a tight
composition theorem.

The authors of [36] also define µ-Gaussian differential privacy as the particular case
of f -differential privacy where f is the trade-off function of two Gaussian distributions
N (0, 1) and N (µ, 1) with µ ≥ 0. Besides being fully described by a single parameter,
this specific definition has several attractive properties. Indeed, it can be proven that all
hypothesis testing based notions of privacy converge to Gaussian differential privacy under
composition in the limit. Finally, a Gaussian mechanism with properly scaled variance
σ2 = (∆2f/µ)2 provides µ-Gaussian differential privacy.

2.2 Differential privacy applications

2.2.1 Application in industry

The strong privacy guarantees provided by differential privacy have been the subject
of intensive academic research but have also sparked interest within the information tech-
nology industry. Notably, it has been adopted by some of the most dominant companies
including Apple [123], Microsoft [35], Google [48, 1] and Meta [139]. We present here a
few real-world applications developed by these organizations.

Collecting and publishing data on user activity

As differential privacy relates to sensitive data, a first straightforward application is to
use it to collect and analyze information that belongs to the users of a service. Specifically,
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the local variant of differential privacy lends itself well to this practice. In local differential
privacy [42], each individual directly sanitizes its own piece of private data without the
intervention of a trusted party. The locally sanitized data is then centrally collected for
statistical analysis. As a result, data owners in this framework do not have to share their
sensitive information and the data collector only has access to the sanitized output.

Apple has implemented local differential privacy in algorithms to allow app developers
to collect usage and typing history. Their system architecture is documented in a patent
application [124] and associated white paper [123]. In the latter, the authors combine
different technical advances like the use of the Fourier transform to spread out signal
information and sketching techniques to reduce the massive domain dimensionality. They
also provide an analysis of the trade-offs among privacy, utility, server computation and
device bandwidth. These algorithms have been deployed on hundreds of millions of devices
for various purposes such as identifying popular emojis, popular health data types and
media playback preferences in Apple’s web browser.

One of the main challenges facing the industry to deploy differential privacy systems
lies in the management of the privacy budget, with a tension between a valid level of
privacy and a reasonable amount of noise for concrete applications. This difficulty is
highlighted by several research works [122, 55] showing the strong privacy limitations in
the early deployments of Apple’s differentially private algorithms.

In addition to contributing to the development of differential privacy [46, 47], Microsoft
has worked on data collection over time from devices with privacy guarantees [35]. The
latter degrade as the same dataset is queried several times as we have seen above with
the sequential composition property. The authors propose locally differentially private
mechanisms to perform mean and histogram estimation on repeatedly collected data.
Their solution has been deployed across millions of devices.

For its part, Google has developed a system called Randomized Aggregatable Privacy-
Preserving Ordinal Response (RAPPOR) [48] which aims to collect and analyze web
browsing behavior with local differential privacy and utility guarantees. It combines the
randomized response mechanism with Bloom filters to obtain a compact representation of
sensitive data. RAPPOR has been deployed on Google’s web browser to collect data from
millions of consenting users and identify popular web destinations. Following research [49]
explains how to extract these destination identities without prior knowledge of their web
addresses.

The French telecommunications company Orange is interested in privacy-preserving
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data publication. It has proposed a solution [12] which combines co-clustering with syn-
thetic data generation to sanitize datasets under differential privacy. Its research also
focuses on the protection of mobility data [52], for which simple pseudonymization is
not always enough to prevent a privacy breach [41]. In particular, Orange has developed
an open-source Android application [101] which implements geo-indistinguishability [4],
an adaptation of differential privacy to location data that can be satisfied through the
addition of planar Laplacian noise.

Training machine learning models

Beyond classical statistics, another popular application is the training of machine
learning models with differential privacy guarantees. In this context, the sensitive infor-
mation is the training data of which the model can be seen as a function. Previous work
has shown it is possible to extract parts of the training data only by interacting with the
model through inputs and outputs [53]. In situations where the training mechanism and
model parameters are shared, privacy guarantees are even more essential. To address this
problem, Google has developed [1] new algorithmic techniques to train machine learning
models such as neural networks under differential privacy along with analysis tools to
compute the corresponding privacy parameters.

Training machine learning models consists in the minimization of a loss function L
by tuning the model parameters θ ∈ Rp. In practice, this process is usually done by the
stochastic gradient descent (SGD) algorithm which estimates the gradient ∇θL(θ) on a
batch of random training examples. The approach described in [1] intends to limit the
impact of the training data during the training process. The authors propose a differen-
tially private version of the SGD inspired by [119] and outlined in Algorithm 1.

Compared to the classical SGD, this algorithm includes two additional instructions
at each training step: gradient clipping and noise addition. The first one controls the
influence of each individual training example on the computed gradient by ensuring its ℓ2

norm is always smaller than a clipping threshold C. Then, Gaussian noise is added over
the average gradient on the group of examples with variance depending on both C and a
parameter σ. Essentially, this corresponds to a Gaussian mechanism which protects the
gradient whose ℓ2-sensitivity is bounded beforehand.

As this privacy mechanism is applied at each training step, a relevant problem is the
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Algorithm 1: Differentially private SGD
Input: Examples {x1, . . . , xN}, loss function L(θ) = 1

N

∑
i L(θ, xi). Parameters:

learning rate η, batch size L, noise scale σ, gradient norm bound C.
Initialize θ0 randomly
for t ∈ [T ] do

Take a random sample Lt with sampling probability L/N
Compute gradient: ∀i ∈ Lt, gt(xi)← ∇θtL(θt, xi)
Clip gradient: ḡt(xi)← gt(xi)/max(1, ∥gt(xi)∥2

C
)

Add noise: g̃t ← 1
L

(∑i ḡt(xi) +N (0, σ2C2Ip))
Descent: θt+1 ← θt − ηg̃t

end
Output: θT

computation of the overall privacy parameters (ε, δ) once the model is trained. Direct
bounds for these are obtained from the sequential and advanced composition theorems
presented in Section 2.1.2. A more refined solution introduced by [1] is the moments ac-
countant procedure that keeps count of the privacy parameters during the training process
through the composability of differential privacy. This accounting method yields tighter
bounds by proving that the differentially private SGD satisfies (O( L

N
ε
√
T ), δ)-differential

privacy with respect to the complete set of examples {x1, . . . , xN} for appropriate choices
of the noise scale and clipping threshold parameters. More precisely, the moments ac-
countant keeps track of the higher-order moments of the privacy loss random variable.
The latter is defined as ln

{
Q(B|x)
Q(B|x′)

}
at B ∈ B for a privacy mechanism with distribution

Q(·|X) and for all adjacent datasets x, x′ ∈ Xm. This random variable is closely related to
the Rényi differential privacy definition [95] presented in Section 2.1.3. This relaxation of
differential privacy is therefore well suited for the privacy parameter computations of the
moments accountant. Since this method, other works on privacy amplification by iteration
[50, 8] have been conducted to further improve the bounds on the privacy parameters for
learning algorithms.

The differentially private SGD and moments accountant have been implemented in the
TensorFlow Privacy [59] Python library. It is based on TensorFlow [2], the software
library for machine learning developed by Google. A similar implementation of the differ-
entially private SGD named Opacus [139] has been proposed by Meta for their machine
learning framework PyTorch. This Python library provides a privacy accounting method
based on Rényi differential privacy as well.
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2.2.2 Application to graphs

Our work aims to protect sensitive information contained in a signal defined on the
vertices of a graph. While it is different from directly protecting a graph with differential
privacy, we wish to mention several ways to achieve this in order to better distinguish
between these two approaches. Here, we briefly present some privacy mechanisms that
sanitize queries on graphs or entire graphs. More details and examples can be found in
the recent survey from [84].

Graph query sanitization

Differential privacy was originally introduced to offer privacy guarantees to sensitive
information contained in tabular datasets. Its definition has been adapted to the graph
data structure in which vertices represent individuals and edges represent relationships be-
tween them. Statistical analysis on graphs studies the structure and relationships between
the vertices and edges that compose them. Similarly to tabular data, this information can
be obtained through a query function f applied to a graph G = (V , E) consisting of a set
of vertices V and a set of edges E . Some of the commonly used statistics for graphs are
vertex degrees and their distribution, centrality and distance metrics as well as subgraph
counts.

Mechanisms that aim to sanitize such graph queries usually compute the sensitive
output f(G) and then transform it to ensure privacy. A definition of differential privacy
for graphs can be obtained by replacing datasets with graphs in Definition 2.1.4.

Definition 2.2.1 (Graph (ε, δ)-differential privacy). Let ε, δ ≥ 0. The privacy mechanism
M is said to satisfy (ε, δ)-differential privacy if, for all neighboring graphs G and G ′,

Q(B|G) ≤ eεQ(B|G ′) + δ, ∀B ∈ B.

In differential privacy for tabular data, the privacy mechanism distribution Q is con-
ditioned on datasets x and x′ that differ in one entry. Analogously, there are two common
notions of neighboring graphs based on either their vertices or edges. Both use the sym-
metric difference between two sets given by A△B = (A ∪ B) \ (A ∩ B).

Two graphs G = (V , E) and G ′ = (V ′, E ′) are edge neighbors if they share the same
vertices and differ in one edge, that is, V = V ′ and |E △E ′| = 1. This definition is
illustrated by Figures 2.3a and 2.3b where the graphs only differ by the edge {1, 4}.
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Figure 2.3 – Examples of neighboring graphs

Two graphs G = (V , E) and G ′ = (V ′, E ′) are vertex neighbors if they differ in one vertex
and its associated edges, that is, |V △V ′| = 1 and E △E ′ = {{i, j} ∈ E ∪ E ′ | i ∈ V △V ′}.
The graphs shown on Figures 2.3a and 2.3c satisfy this definition as they differ by the
vertex 5 along with the edges {1, 5} and {4, 5}.

These two notions of neighboring graphs produce two variants of graph differential
privacy formalized by [67]: edge-differential privacy and node-differential privacy. The
former protects a relationship between two individuals while the latter protects the pres-
ence of an individual and its relationships with others. Intuitively, it is easier to achieve
edge-differential privacy than node-differential privacy in general.

The Laplace mechanism is one of the key components of edge-differentially private
mechanisms. Identically to the tabular case, it adds noise to the graph query output with
a scale computed from an appropriate sensitivity. For instance, the notion of smooth
sensitivity is introduced by [112] to sanitize subgraph counting queries. These count how
many times a certain subgraph, such as a triangle or a star, appears in a given graph.
Smooth sensitivity has since been broadly used in subsequent research works to improve
the utility of private mechanisms for both tabular and graph data.

Another common graph query is the degree sequence corresponding to a monotonic
non-decreasing sequence of vertex degrees. This query benefits from a small ℓ1-sensitivity
as adding or removing an edge between two vertices only affects their respective degrees.
An algorithm based on constraint inference has been proposed by [67] to improve the
utility of edge-differentially private degree sequences.

As node-differential privacy depends on a different vertex and several different edges,
the same graph queries tend to have a larger sensitivity than for edge-differential privacy
and thus lose utility. As a result, there are less works within this variant of graph differen-
tial privacy. Two kinds of methods have been proposed to tackle this sensitivity problem:
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top-down projections to graphs with lower degrees and bottom-up generalizations using
Lipschitz extensions.

The top-down approach involves mapping the original graph to a new graph with
a bounded maximum degree, and then answering queries on the new graph with noise
that is proportional to the sensitivities of the query function and the projection map.
The notion of restricted sensitivity was introduced by [14] to produce node-differentially
private subgraph counts with this approach. A privacy mechanism which sanitizes a graph
degree distribution with a projection eliminating all vertices whose degrees exceed a chosen
threshold is described in [76].

The bottom-up approach initially answers queries on graphs with bounded maximum
degrees and then extends the answers to arbitrary graphs using Lipschitz extensions. Next,
noise is added to the extended answers with classical privacy mechanisms like the Laplace
mechanism. This approach is employed in [76] and [108] to sanitize subgraph counts and
degree sequences, respectively.

Graph sanitization

In addition to sanitizing graph queries, another common method to protect sensitive
information in graph data is by creating synthetic graphs that resemble the original ones.
One of the primary benefits of this technique is its independence from graph queries,
making it suitable for answering any future query with minimal or no risk of privacy loss.
We now mention some approaches proposed in the literature to sanitize graphs under
differential privacy.

A first approach to synthesize a private graph is to build a generative model whose
parameters are estimated in a manner that is differentially private. The Pygmalion model
[110] follows this methodology by using a dK-graph model [90] to count the number of
connected subgraphs of size k with varying degree combinations as dK-series. Then, the
latter are sorted and partitioned into disjoint unions of close sub-series sanitized with the
Laplace mechanism. After applying the constraint inference-based method from [67] to
reduce noise, a synthetic graph is created from the series.

An alternative approach to generative graph models consists in approximating the
original weight and Laplacian matrices through perturbation strategies. A first example
introduced in [134] adds Laplacian noise to the largest k eigenvalues and eigenvectors of
the weight matrix before turning them into a lower rank matrix. Another example of this
approach is presented in [19] where weight matrices are sanitized for weighted directed
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graphs. The Laplace mechanism is applied to the matrices depending on the sensitivity
within blocks of vertices.

Graph signal sanitization

In the case where a graph signal f ∈ Rn corresponds to the output of a query function
f : Xm → Rn applied to a dataset x, sanitization can be achieved through classical
privacy mechanisms for tabular data. For instance, if each individual of a dataset can be
associated with a vertex of a graph, a query that counts the number of individuals for
each vertex can be sanitized with simple Gaussian noise [7]. This is the chosen approach
presented in Chapter 3.

Another interesting example of differential privacy for graph signals is found in the
sanitized training of neural networks. First, a graph structure can be derived from the
underlying network architecture. Then, a signal on this graph is given by the network pa-
rameter values and updated multiple times by querying batches of private data through
the training mechanism. In this setting, differentially private SGD discussed in Section
2.2.1 corresponds to graph signal sanitization using the classical Gaussian mechanism. Al-
though not developed here, this example seems to be both a natural ground for application
of our denoising methodology and a promising direction for future research.
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Chapter 3

LARGE GRAPH SIGNAL DENOISING WITH

APPLICATION TO DIFFERENTIAL PRIVACY

Over the last decade, signal processing on graphs has become a very active area of re-
search. Specifically, the number of applications, for instance in machine or deep learning,
using frames built from graphs, such as wavelets on graphs, has increased significantly.
We consider in particular the case of signal denoising on graphs via a data-driven wavelet
tight frame methodology. This adaptive approach is based on a threshold calibrated us-
ing Stein’s unbiased risk estimate adapted to a tight frame representation. We make it
scalable to large graphs using Chebyshev-Jackson polynomial approximation, which allow
fast computation of the wavelet coefficients, without the need to compute the Laplacian
eigendecomposition. However, the overcomplete nature of the tight frame, transforms a
white noise into a correlated one. As a result, the covariance of the transformed noise
appears in the divergence term of the SURE, thus requiring the computation and storage
of the frame, which leads to an impractical calculation for large graphs. To estimate such
covariance, we develop and analyze a Monte Carlo strategy, based on the fast transfor-
mation of zero mean and unit variance random variables. This new data-driven denoising
methodology finds a natural application in differential privacy. A comprehensive perfor-
mance analysis is carried out on graphs of varying size, from real and simulated data.

3.1 Introduction

Data acquired from large-scale interactive systems, such as computer, ecological, so-
cial, financial or biological networks, become increasingly widespread and accessible. In
modern machine learning, the effective representation, processing or analysis of these
large-scale structured data with graphs or networks are some of the key issues [99, 16].
The emerging field of Graph Signal Processing (GSP) highlights connections between sig-
nal processing and spectral graph theory [115, 103], while building bridges to address
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these challenges. Indeed, GSP has led to numerous applications in the field of machine
learning: convolutional neural networks (CNN) on graphs [18], [68, 33], semi-supervised
classification with graph CNN [77, 64] or community detection [127] to name just a few.
We refer the reader to [38] for a recent review providing new perspectives on GSP for
machine learning including, for instance, the important role it played in some of the early
designs of graph neural networks (GNNs) architectures. Moreover, the recent study in [54]
shows that popular GNNs designed from a spectral perspective, such as spectral graph
convolutional networks or graph attention networks, are implicitly solving graph signal
denoising problems.

In the past decades, sparse approximation with respect to a frame played a funda-
mental role in many areas such as signal compression and restoration, data analysis, and
GSP in general. Indeed, overcomplete representations like wavelet frames have several
advantages and offer more flexibility over orthonormal bases. One representative family
of overcomplete systems derived form the orthonormal Diffusion Wavelets of [27] is the
so-called Spectral Graph Wavelet Transform (SGWT) of [65] constructed from a general
wavelet frame. In a denoising context, SGWT has recently been adapted by [58] to form a
tight frame using the Littlewood-Paley decomposition inspired by [28]. Based on SGWT,
[86] proposed an automatic calibration of the threshold parameter by adapting Stein’s
unbiased risk estimate (SURE) for a noisy signal defined on a graph and decomposed in a
given wavelet tight frame. Even if this selection criterion produces efficient estimators of
the unknown mean squared error (MSE), the main limitation is the need for a complete
eigendecomposition of the Laplacian matrix, making it intractable for large-scale graphs.

We propose here to extend this methodology to large sparse graphs by avoiding this
eigendecomposition, thus extending its range of application. Different strategies have been
proposed in the context of GSP, one of the most popular is based on Chebyshev poly-
nomial approximation [65]. However, even if Chebyshev expansions are a good choice in
many scenarios, approximations of discontinuous or non-periodic functions suffer from
the Gibbs phenomenon. A simple strategy commonly used in GSP [114] to reduce pos-
sible spurious oscillations without additional computational cost is the introduction of
Jackson’s damping coefficients [73, 34] which allows for higher orders of approximation.

As SURE can be evaluated in the wavelet domain, its calculation benefits directly from
these efficient numerical approximations. In order to make it suitable for large sparse
graphs, the only problematic step is the computation of the weights appearing in its
expression. Indeed, since the SGWT is no longer orthogonal a white Gaussian noise in
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the graph domain is transformed into a correlated one thus involving the covariance of
the transformed noise in the resulting SURE divergence term. The latter requires the
explicit computation and storage of the frame in order to be calculated. Inspired by the
estimation of the correlation between wavelets centered at different vertices proposed in
[127], our contribution is to take advantage of the interpretation of the SURE weights
as the covariance between wavelet transforms of random signals in order to estimate
them with Monte Carlo approximation. We then plug this weight estimator in the SURE
formula to obtain an estimator of SURE that extends well to large graph signals. In
addition, we provide expressions for the variance of our proposed estimators and show
that drawing Monte Carlo samples from the centered Rademacher distribution gives a
smaller variance compared to the standard Gaussian distribution. Our approach is in line
with other methods [107, 138] that also use Monte Carlo strategy, but to estimate the
entire divergence term involved in the calculation of SURE, in the case of uncorrelated
noise.

Our proposed method can remove noise from any signal defined on a graph, this
includes images [115] and 3D meshes [100] which can have a large number of vertices.
Here, we focus on an interesting application in differential privacy [46] whose purpose is
to protect sensitive data used by algorithms. Such privacy guarantees are usually achieved
by adding white noise to the signal which inevitably reduces its statistical utility as
the relevant information it contains is perturbed. This utility can be partially recovered
through denoising on the condition that no information about the original signal is used.
As our proposed data-driven methodology lends itself well to this usage for graph signals,
we incorporate it in our numerical experiments. These give an evaluation of our Monte
Carlo estimator of SURE and its weights, along with the overall denoising methodology
on both small and large graphs. In summary, the contributions of this paper are as follows:

— We propose a Monte Carlo estimation of Stein’s unbiased risk estimate (SURE)
that extends to signals defined on large-scale graphs. This method avoids the com-
putationally expensive eigendecomposition of the graph Laplacian matrix required
to compute weights that appear in the SURE expression.

— Provided expressions for the variance of our estimators show that Monte Carlo sam-
ples drawn from a Rademacher distribution is more efficient than with a Gaussian
distribution. This theoretical result is illustrated through numerical experiments
that compare both distributions.

— A performance analysis of the proposed graph signal denoising methodology shows

73



Chapter 3 – Large graph signal denoising with application to differential privacy

its performance on real data protected with differential privacy and simulated large
graph signals.

The paper is structured as follows. We introduce our notation of graph signals and
briefly recall the SGWT definition of [65], its construction by [58] and polynomial approx-
imation in Section 3.2. Our proposed Monte Carlo estimators of SURE and its weights
along with their respective variance are presented in Section 3.3. In Section 3.4 we present
the notion of differential privacy from [46] and two methods to achieve it in the context of
graph signals. Finally, we numerically evaluate our estimators and compare our method-
ology to the DFS fused lasso introduced in [69] for small and large graphs in Section
3.5.

3.2 Graph signal denoising

Consider a signal f ∈ RV defined on an undirected weighted graph G, with set of
vertices V of cardinality n, and weighted adjacency matrix W with entries (wij)i,j∈V . The
(unnormalized) graph Laplacian matrix L ∈ RV×V associated with G is the symmetric
matrix defined as L = D−W, where D is the diagonal matrix with diagonal coefficients
Dii = ∑

j∈V wij. We present here our methodology with this particular Laplacian matrix
but it can be easily adapted to its normalized and random walk counterparts like presented
below in Section 3.2.3.

The noise corruption model can be written as

f̃ = f + ξ,

where ξ ∼ N (0, σ2In). The purpose of denoising is to build an estimator f̂ of f that
depends only on f̃ .

A simple way to construct an effective non-linear estimator is obtained by thresholding
the SGWT coefficients of f on a frame (see [65] for details about the SGWT). Given the
Laplacian and a given frame, denoising in this framework can be summarized as follows:

1. Analysis: Compute the SGWT transform Wf̃

2. Thresholding: Apply a given thresholding operator (e.g., soft or hard) to the coef-
ficients Wf̃

3. Synthesis: Compute the inverse SGWT transform to obtain an estimate f̂ of the
original signal
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This procedure can be viewed as an extension of the wavelet denoising methodology
from Donoho and Johnstone [39] to the SGWT.

3.2.1 Spectral graph wavelet transform

The SGWT decomposes a signal into a frame F = {ri}i∈I of vectors of RV with frame
bounds A,B ∈ [0,∞) satisfying for all f ∈ RV

A∥f∥2
2 ≤

∑
i∈I

|⟨f , ri⟩|2 ≤ B∥f∥2
2.

When A = B = 1, the above inequality becomes Parseval’s identity and such a frame is
said to be tight.

As L is a symmetric matrix, its spectral decomposition is given by L = ∑n
ℓ=1 λℓ⟨vℓ, ·⟩vℓ,

where 0 = λ1 < λ2 ≤ · · · ≤ λn are the (ordered) eigenvalues of L and (vℓ)1≤ℓ≤n are the
associated eigenvectors. Then for any function ρ : sp(L)→ R defined on the spectrum of
L, we have the functional calculus formula ρ(L) = ∑n

ℓ=1 ρ(λℓ)⟨vℓ, ·⟩vℓ.
We build a tight frame following [80, 58] with a finite partition of unity (ϕj)j=0,...,J on

the compact [0, λn] defined as follows: let ω : R+ → [0, 1] be some continuous function
with support in [0, 1], satisfying ω ≡ 1 on [0, b−1], for some b > 1, and set

ϕ0(x) = ω(x), ϕj(x) = ω(b−jx)− ω(b−j+1x),

for j = 1, . . . , J , where J = ⌊ln λn/ ln b⌋ + 2. In our numerical experiments, we use the
following piecewise linear function ω:

ω(x) =


1 if 0 ≤ x ≤ b−1

b
1−b

x+ b
b−1 if b−1 < x ≤ 1

0 if x > 1.

with parameter b = 2. An alternative ω function is the C∞ function hc(x) = gc(x+1)gc(1−
x) where gc(x) = f(x)/(f(x)+f(c−x)) and f(x) = e−1/x1{x>0}. Another choice is to take
a C3 piecewise polynomial plateau function like the authors of [58]. Figure 3.1 illustrates
the ω and hc functions with parameters b = 2 and c = 1, respectively.

The partition of unity (ϕj)j=0,...,4 on [0, λn] obtained with the graph presented in the
first experiment from Section 3.5 is shown in Figure 3.2.
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Figure 3.2 – Finite partition of unity on [0, λn]

Using Parseval’s identity, we can show that the following set is a tight frame:

F =
{√

ϕj(L)δi, j = 0, . . . , J, i ∈ V
}
.

Decomposing a signal f ∈ RV into this frame results in its SGWT along the (J+1) scales:

Wf =
(√

ϕ0(L)f⊤, . . . ,
√
ϕJ(L)f⊤

)⊤
∈ Rn(J+1).

With the tightness property of the frame, the inverse transform is directly given by the
application of the adjoint matrix to the wavelet coefficients:

W∗
(
η⊤

0 ,η
⊤
1 , . . . ,η

⊤
J

)⊤
=
∑
j≥0

√
ϕj(L)ηj.
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3.2.2 SGWT polynomial approximation

Direct computation of the SGWT entails functional calculus on the graph Laplacian
matrix L and thus the computation of its eigenvectors and eigenvalues. This limits appli-
cations to reasonably sized graphs that have less than a few thousand vertices. For larger
ones, the computationally expensive eigendecomposition can be avoided through a fast
transform based on Chebyshev polynomial approximation [65].

The Chebyshev polynomials of the first kind Tk(x) are obtained from the recurrence
relation Tk(x) = 2xTk−1(x)−Tk−2(x), with T0(x) = 1 and T1(x) = x. They form an orthog-
onal basis of the Hilbert space L2([−1, 1], dx/

√
1− x2). Any filter ρ can be approximated

with the truncated Chebyshev expansion of degree K

ρK(L) =
K∑

k=0
θk(ρ̃)Tk(L̃),

where θk(ρ̃) is the kth coefficient of the Chebyshev expansion of function ρ̃(x) = ρ(λn

2 (x+
1)) and Tk(L̃) is the k-degree Chebyshev polynomial computed for L̃ = 2

λn
L − In. This

transformation of L extends the expansion to any Laplacian matrix by mapping [0, λn]
into [−1, 1]. According to [65], for all filter ρ defined on sp(L) and all signal f , the
approximation ρK(L)f is close to ρ(L)f .

While this first approximation is more practical than the direct SGWT, it is subjected
to the Gibbs phenomenon. A solution is to include Jackson coefficients gK

k as damping
multipliers in the Chebyshev expansion:

ρK(L) =
K∑

k=0
gK

k θk(ρ̃)Tk(L̃).

An expression of these damping factors can be found in [73], a shorter form proposed in
[34] is given by

gK
k = sin(k + 1)αK

(K + 2) sin(αK) +
(

1− k + 1
K + 2

)
cos(kαK),

where αK = π/(K+2). This Chebyshev-Jackson polynomial approximation reduces Gibbs
oscillations resulting in a better convergence as the degree K increases.
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3.2.3 Extension to other Laplacian matrices

As previously mentioned, this methodology also adapts well to the normalized and ran-
dom walk (or asymmetric) Laplacian matrices, respectively defined as Lnorm = D− 1

2LD− 1
2

and Lrw = D−1L. These have been used as an alternative to the unnormalized graph
Laplacian L in other related methods such as the graph Fourier transform [57].

The normalized Laplacian matrix is real symmetric like L which means it is diagonal-
izable and therefore suited for our approach. As its spectrum sp(Lnorm) = {µ1, . . . , µn} is
always contained in the interval [0, 2], its maximum eigenvalue µn is bounded by 2. This
represents a special case of the construction described above and requires a few modi-
fications. First, the formula J = ⌊lnµn/ ln b⌋ + 2 that determines the number of scales
in the wavelet decomposition restricts the choice of parameter b to the interval (1, 2] in
order to get more than J + 1 = 3 scales. Then, the polynomial approximation consists
of the truncated Chebyshev expansion of function ρ̃(x) = ρ(x + 1) with the appropriate
transformation L̃norm = Lnorm − In.

On the other hand, the random walk Laplacian matrix is not symmetric but is diago-
nalizable nonetheless as it is similar to the normalized Laplacian: Lnorm = D 1

2LrwD− 1
2 . Its

eigenvalues and eigenvectors are easily obtained from the eigendecomposition of Lnorm:

Lnormuℓ = µℓuℓ

D
1
2LrwD− 1

2uℓ = µℓuℓ

Lrw(D− 1
2uℓ) = µℓ(D− 1

2uℓ),

where uℓ is the eigenvector of Lnorm associated with µℓ. We see that Lrw has exactly
the same spectrum as Lnorm and its set of eigenvectors is given by {D− 1

2uℓ}ℓ=1,...,n.
Since these form an orthonormal basis for Rn with the inner product ⟨x,y⟩D = x⊤Dy,
we have the spectral decomposition Lrw = ∑n

ℓ=1 µℓ⟨D− 1
2uℓ, ·⟩DD− 1

2uℓ. The functional
calculus formula for any function ρ defined on the spectrum of Lrw is thus ρ(Lrw) =∑n

ℓ=1 ρ(µℓ)⟨D− 1
2uℓ, ·⟩DD− 1

2uℓ. Chebyshev polynomial approximation can then be applied
in the same way as for the normalized Laplacian matrix.
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3.3 SURE weights Monte Carlo estimation

From [86], SURE for a general thresholding process h : Rn(J+1) → Rn(J+1) is given by
the following identity

SURE(h) = −nσ2 + ∥F̃ − h(F̃ )∥2
2 + 2σ2

n(J+1)∑
i,j=1

γij∂jhi(F̃ ),

where F̃ = Wf̃ is the wavelet transform of the noisy signal f̃ . In [86], the weights
γij = (WW∗)ij, i, j = 1, . . . , n(J + 1), are computed from the full reduction of the
Laplacian matrix which is no longer tractable for large graphs. However, as shown in [65],
the SGWT can be efficiently approximated by using Chebyshev polynomials. Besides, it
is clear from the probabilistic interpretation given in [86, Theorem 1] that

∀i, j = 1, . . . , n(J + 1), γij = E[(Wε)i(Wε)j],

where ε = (ε1, . . . , εn) are i.i.d. random variables with zero mean and variance one. Thus,
taking advantage of this identity, we propose to estimate the weights with Monte Carlo
approximation as follows:

1. Generate (εik)i=1,...,n,k=1,...,N of i.i.d. random variables such that E[εik] = 0 and
V[εik] = 1

2. Compute

γ̂ij = 1
N

N∑
k=1

(Wεk)i(Wεk)j,

where εk = (εik)i=1,...,n are random signals

Generally speaking, whereas Monte Carlo are simple methods to implement and can
be easily parallelized, they suffer from their slow rate of convergence. In practice, a well-
chosen distribution for the random variables εik can result in a lower variance of the
estimator V[γ̂ij] whose expression is given below. In fact, it is even more interesting to
compute the variance of SURE when the estimator γ̂ij is plugged in place of the weights
γij in the SURE expression.
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3.3.1 Variance of the SURE weight estimator

A straightforward computation gives the expectation of γ̂ij

E[γ̂ij] = E

 n∑
p=1
Wipεp1

 n∑
p=1
Wjpεp1

 =
n∑

p,q=1
WipWjqE[εp1εq1] =

n∑
p=1
WipWjp = γij.

The variance of γ̂ij is given by the following result and its computation is derived
underneath.

Proposition 3.3.1.

V[γ̂ij] = 1
N

V[ε2
11]

n∑
p=1
W2

ipW2
jp + 2E[ε2

11]2
n∑

p,q=1,
p ̸=q

WipWiqWjpWjq

.

Proof. The formula of the weights γ̂ij is given by

γ̂ij = 1
N

N∑
k=1

 n∑
p=1
Wipεpk

 n∑
p=1
Wjpεpk

 .
The variance of γ̂ij reads

V[γ̂ij] = 1
N
V

 n∑
p=1
Wipεp1

 n∑
p=1
Wjpεp1

 .
Then, on the one hand

E


 n∑

p=1
Wipεp1

2 n∑
p=1
Wjpεp1

2
 =

n∑
p,q,r,s=1

WipWiqWjrWjsE[εp1εq1εr1εs1]

= E[ε4
11]

n∑
p=1
W2

ipW2
jp + E[ε2

11]2
n∑

p,r=1,
p ̸=r

W2
ipW2

jr + 2E[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWiqWjpWjq.

On the other hand,

E


 n∑

p=1
Wipεp1

2
 =

n∑
p,q=1
WipWiqE[εp1εq1] = E[ε2

11]
n∑

p=1
W2

ip.
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Finally,

V

 n∑
p=1
Wipεp1

 n∑
p=1
Wjpεp1

 = E[ε4
11]

n∑
p=1
W2

ipW2
jp + E[ε2

11]2
n∑

p,r=1,
p ̸=r

W2
ipW2

jr

+ 2E[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWiqWjpWjq − E[ε2
11]2

n∑
p,q=1
W2

ipW2
jq

= V[ε2
11]

n∑
p=1
W2

ipW2
jp + 2E[ε2

11]2
n∑

p,q=1,
p ̸=q

WipWiqWjpWjq.

Note the usual rate of convergence
√
N from Monte Carlo estimation. In many papers

in the literature ε11 is chosen to be distributed as a standard Gaussian random variable so
that V[ε2

11] = 2. However, if ε11 has a centered Rademacher distribution with probability
mass function 1

2δ−1 + 1
2δ1, then ε2

11 is deterministic and V[ε2
11] = 0. With such a choice,

the variance of γ̂ij is then reduced to

V[γ̂ij] = 2
N

n∑
p,q=1,

p ̸=q

WipWiqWjpWjq.

This trick is actually well known in the literature [71]. This computation somehow provides
arguments in favor of the Rademacher distribution.

Another way to further reduce the variance of γ̂ij is to take advantage of the SGWT
localization property. Let us denote by ⌊x⌋ the integer part of a real x ∈ R. Then, for any
i ∈ {1, . . . , n(J + 1)} and any p ∈ {1, . . . , n}

|Wip| =
∣∣∣∣〈√ϕ⌊i/n⌋(L)δi−⌊i/n⌋, δp

〉∣∣∣∣ ≤ ∥ϕ⌊i/n⌋(L)∥2
2 ≤ 1.

Since the SGWT is localized both in the space and the frequency domain, Wip vanishes
as the geodesic distance between i − ⌊i/n⌋ and p grows. Thus, the performance of the
Monte Carlo estimation could be improved by a suitable calibration of the partition of
unity. As a consequence, most terms in the expression of V[γ̂ij] are small thanks to the
localization properties of SGWT.
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3.3.2 Variance of the SURE estimator

The SURE plug-in estimator is obtained by replacing the weights γij with their Monte
Carlo estimators γ̂ij:

ŜURE(h) = −nσ2 + ∥F̃ − h(F̃ )∥2
2 + 2σ2

n(J+1)∑
i,j=1

γ̂ij∂jhi(F̃ ).

Given the observed wavelet coefficients F̃ , this estimator of SURE has no bias as it is a
linear function of the unbiased weight estimators γ̂ij. The following proposition presents
its conditional variance.

Proposition 3.3.2.

V[ŜURE(h)|F̃ ] = 4σ4

N

n(J+1)∑
i,j,k,ℓ=1

∂jhi(F̃ )∂khℓ(F̃ )

V[ε2
11]

n∑
p=1
WipWjpWkpWℓp

+ E[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkpWℓq + E[ε2
11]2

n∑
p,q=1,

p̸=q

WipWjqWkqWℓp

.

Here again, the Rademacher distribution reduces the variance compared to the Gaus-
sian distribution.

Proof. From the SURE expression, it follows that

V[ŜURE(h)|F̃ ] = 4σ4E


n(J+1)∑

i,j=1
(γ̂ij − γij)∂jhi(F̃ )

2


= 4σ4
n(J+1)∑
i,j,k,ℓ=1

∂jhi(F̃ )∂khℓ(F̃ )E[(γ̂ij − γij)(γ̂kℓ − γkℓ)]

= 4σ4
n(J+1)∑
i,j,k,ℓ=1

∂jhi(F̃ )∂khℓ(F̃ ) [E[γ̂ij γ̂kℓ]− γijγkℓ] .

Then,

N2E[γ̂ij γ̂kℓ] =
N∑

a,b=1
E

 n∑
p=1
Wipεpa

 n∑
p=1
Wjpεpa

 n∑
p=1
Wkpεpb

 n∑
p=1
Wℓpεpb

.
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Developing each term of the sum above, it follows

N2E[γ̂ij γ̂kℓ] =
N∑

a,b=1

n∑
p,q,r,s=1

WipWjqWkrWℓsE[εpaεqaεrbεsb].

Thus, on the one hand

N2E[γ̂ij γ̂kℓ] = NE[ε4
11]

n∑
p=1
WipWjpWkpWℓp +NE[ε2

11]2
n∑

p,q=1,
p̸=q

WipWjpWkqWℓq

+NE[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkpWℓq +NE[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkqWℓp

+N(N − 1)E[ε2
11]2

n∑
p,q=1
WipWjpWkqWℓq.

On the other hand,

γijγkℓ = E[ε2
11]2

 n∑
p=1
WipWjp

 n∑
p=1
WkpWℓp

 = E[ε2
11]2

n∑
p,q=1
WipWjpWkqWℓq.

Finally, the difference is given by

N2E[γ̂ij γ̂kℓ]−N2γijγkℓ

= NE[ε4
11]

n∑
p=1
WipWjpWkpWℓp +NE[ε2

11]2
n∑

p,q=1,
p ̸=q

WipWjpWkqWℓq

+NE[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkpWℓq +NE[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkqWℓp

+N(N − 1)E[ε2
11]2

n∑
p,q=1
WipWjpWkqWℓq −N2E[ε2

11]2
n∑

p,q=1
WipWjpWkqWℓq.
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Hence,

N2E[γ̂ij γ̂kℓ]−N2γijγkℓ = NV[ε2
11]

n∑
p=1
WipWjpWkpWℓp +NE[ε2

11]2
n∑

p,q=1,
p ̸=q

WipWjqWkpWℓq

+NE[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkqWℓp.

Summarizing,

V[ŜURE(h)|F̃ ] = 4σ4

N

n(J+1)∑
i,j,k,ℓ=1

∂jhi(F̃ )∂khℓ(F̃ )

V[ε2
11]

n∑
p=1
WipWjpWkpWℓp

+ E[ε2
11]2

n∑
p,q=1,

p ̸=q

WipWjqWkpWℓq + E[ε2
11]2

n∑
p,q=1,

p̸=q

WipWjqWkqWℓp

.

3.3.3 Computational complexity

The polynomial approximation of all random signal wavelet transforms Wεk is of or-
der O(N(mK + n(J + 1)K)), where m is the number of edges in the graph [65]. Then,
computing every (γ̂ij)i,j=1,...,n(J+1) term requires O(n2(J + 1)2(2N − 1)) operations. The
computation of all the weights is useful when performing block thresholding on the wavelet
coefficients Wf̃ [86] which shows good denoising performance but is relatively computa-
tionally expensive. Alternatively, a coordinatewise thresholding process only needs the
diagonal weights (γ̂ii)i=1,...,n(J+1) whose computation is reduced to O(n(J + 1)N) opera-
tions.

After this initial weight estimation, the computational complexity for the approxi-
mated wavelet transform of the noisy signal f̃ is O(mK+n(J+1)K). The coordinatewise
thresholding step has an average cost of O(n(J+1) ln(n(J+1))) according to [39]. Finally,
the approximated inverse transform has the same complexity as the forward transform.
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3.4 Differential privacy and Gaussian mechanism

We now give a definition of differential privacy [46] which constitutes a strong standard
for privacy guarantees about algorithms that use sensitive data. Let (X1, . . . , Xm) be a
random vector containing the private data of m individuals we wish to protect with a
privacy mechanism. This information is collected in a dataset X = (X1, . . . , Xm) that
serves as an input to the privacy mechanism M which returns a sanitized output Z =
(Z1, . . . , Zk) = M(X) that preserves the privacy of each individual. Let (Xm,Am) and
(Z,B) be the measurable spaces where X and Z respectively take values. The privacy
mechanism distribution Q(·|X) corresponds to the conditional distribution of Z given X,
that is Q(B|x) = P(Z ∈ B|X = x), where Q(·|·) : B × Xm → [0, 1] is a Markov kernel.

Let ε ≥ 0 be the privacy budget and δ ≥ 0 another privacy parameter. The privacy
mechanism M is said to satisfy (ε, δ)-differential privacy if for any two datasets x, x′ ∈ Xm

that differ in a single entry and for any subset of outputs B ∈ B, we have

Q(B|x) ≤ eεQ(B|x′) + δ.

As it appears from this definition, smaller privacy parameters lead to closer output distri-
butions and hence a better privacy preserving mechanism. Intuitively, differential privacy
protects individuals by ensuring the inclusion or removal of their information from the
input dataset does not affect much the output distribution.

In this paper, we are interested in functions f : Xm → Rn that map a dataset X to
a graph signal f ∈ Rn. In order to achieve differential privacy, a common method is to
introduce just enough uncertainty in the function response to hide the participation of
any single individual. The Gaussian mechanism does so by adding white Gaussian noise
ξ ∼ N (0, σ2In) to the response where the standard deviation σ is calibrated to the privacy
parameters and a third quantity ∆2f called the ℓ2-sensitivity. It is defined by ∆2f =
max ∥f(x) − f(x′)∥2 which corresponds to the maximum impact a single individual’s
information can have on the signal f . This method yields a sanitized output Z = f(X)+ξ
that can be interpreted as a noisy signal f̃ = f +ξ with our noise corruption model given
in Section 3.2.

We present two Gaussian mechanisms that use different variance formulas to san-
itize a function f : Xm → Rn with ℓ2-sensitivity ∆2f . First, the classical Gaussian
mechanism proposed by [46] preserves (ε, δ)-differential privacy for any ε, δ ∈ (0, 1) if
σ ≥ ∆2f

√
2 ln(1.25/δ)/ε. The authors of [7] have shown that this formula is not optimal
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and can be further improved to reduce the amount of noise needed to achieve the same
degree of privacy. Whereas the classical Gaussian mechanism uses a Gaussian tail approxi-
mation to obtain a bound for the standard deviation, their proposed approach uses numer-
ical evaluations of the cumulative Gaussian distribution function Φ(x) = P(N (0, 1) ≤ x)
to determine an optimal variance. Their analytic Gaussian mechanism preserves (ε, δ)-
differential privacy for any ε ≥ 0 and δ ∈ [0, 1] if and only if

Φ
(

∆2f

2σ −
εσ

∆2f

)
− eεΦ

(
−∆2f

2σ −
εσ

∆2f

)
≤ δ.

The Gaussian mechanism offers a solution to sanitize a signal at the expense of its utility
as it is perturbed by the introduced noise. Indeed, there is a trade-off between privacy and
utility: very small values of ε and δ ensure a strong degree of privacy but can be detrimental
to the utility of the sanitized data, and vice versa. A valuable aspect of differential privacy
is its immunity to post-processing [44, Prop. 2.1] as long as no knowledge about the
original signal is used. Formally, the composition of any data-independent function with
an (ε, δ)-differentially private mechanism is also (ε, δ)-differentially private. Therefore, a
data-driven denoising method such as ours can improve the utility of a sanitized signal
with no loss of privacy. Indeed, the SGWT, SURE and their respective approximations
only require information contained in the known Laplacian matrix L and observed noisy
signal f̃ .

3.5 Numerical experiments

In this section, we present an experimental evaluation of our Monte Carlo estimator
of the SURE weights described in Section 3.3 and graph signal denoising methodology.
Specifically, we are interested in the sanitization and denoising of density maps of located
events over a given period. First, we consider signals built from real datasets gathering
positions of taxis in the cities of New York and San Francisco. The relatively small size of
their corresponding graphs enables us to diagonalize their respective Laplacian matrices
and directly compute the SGWT and SURE in a reasonable amount of time, thus allowing
the comparison with our approximation method. Then, we generate signals on a large
graph for which the eigendecomposition of the Laplacian matrix is not tractable. Hereafter,
wavelet transforms are performed with the piecewise linear ω function presented in Section
3.2.1 and each polynomial approximation is of degree K = 100.
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3.5.1 Monte Carlo estimator of the SURE weights

This experiment makes use of the New York City (NYC) yellow taxi trip records
publicly released each year by the Taxi and Limousine Commission (TLC). These datasets
contain in particular the pickup and drop-off locations and times of each trip whose
distribution has been the subject of different GSP applications [103, 7, 24]. In the past, a
bad pseudonymization of the taxi ID led to a privacy breach [41] for the drivers and their
passengers about where they might reside and the places they frequent.

Since the yellow taxis mostly operate in the borough of Manhattan, we focus our exper-
iment on Manhattan Island and build an associated graph with OSMnx [15]. This Python
package automatically downloads urban networks from the OpenStreetMap database,
converts them to graph objects of the NetworkX [62] package and offers a variety of
analysis tools. The resulting graph consists of 4513 vertices and 9743 edges representing
street intersections and segments, respectively.

With this first graph, we evaluate the SURE weights Monte Carlo estimators when
their samples are either drawn from a centered Rademacher or standard Gaussian distri-
bution. Their SGWT are computed with the Chebyshev polynomial approximation and
we estimate the weights for different Monte Carlo sample sizes N . We focus on the di-
agonal weights γ̂ii, i = 1, . . . , n(J + 1) as only these are needed in the coordinatewise
thresholding process and compare them to the weights obtained from the direct trans-
form by averaging the MSE along the n vertices and (J + 1) scales over 50 repetitions:
MSE((γii)i, (γ̂ii)i) = 1

n(J+1)
∑n(J+1)

i=1 (γii − γ̂ii)2.

1 5 10 15 20
N

0.000

0.025

0.050

0.075

0.100

0.125

M
S

E

Gaussian

Rademacher

Figure 3.3 – Average MSE between the SURE weights γii and their Monte Carlo estimators
γ̂ii over 50 repetitions.
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Results are presented in Figure 3.3 where we see that drawing samples from the cen-
tered Rademacher distribution gives estimates closer to the real weights in terms of MSE
for any sample size compared to the standard Gaussian distribution. This illustrates the
gain in variance achieved with the former distribution as mentioned in Section 3.3.1.

3.5.2 Monte Carlo estimator of the SURE

We now present how SURE behaves when the estimated weights γ̂ii are plugged in.
On the same graph, we build a signal f by counting the number of taxi pickups projected
to the nearest intersection over a period of one hour. Here, we consider the time interval
between 00:00 and 01:00 on Sept 24, 2014, as chosen by [7] to compare our results in a
similar configuration. We add some white Gaussian noise with standard deviation σ = 1
to obtain a noisy signal and compute its SGWT coefficients with the Chebyshev-Jackson
approximation. The denoising is done by applying the James-Stein thresholding func-
tion τ(x, t) = xmax{1− t2|x|−2, 0} to the coefficients with the threshold that minimizes
MSE(f , f̂). Finally, for this optimal threshold we estimate SURE between the estimate
f̂ and the original signal with known σ for different Monte Carlo sample sizes and both
the centered Rademacher and standard Gaussian distributions.
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Figure 3.4 – Average SURE Monte Carlo estimate and 95% CI over 50 repetitions.

Figure 3.4 shows the average SURE estimate over 50 repetitions along with a 95%
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empirical confidence interval. We visualize the SURE plug-in estimator unbiasedness as
it is centered on the real SURE value. Additionally, we observe the smaller variance
of the Monte Carlo estimator when samples are drawn from the centered Rademacher
distribution compared to the Gaussian distribution, as previously mentioned in Section
3.3.2. As a result, we estimate SURE in the following experiments with 10 samples from
this distribution.

3.5.3 Denoising of differentially private graph signals

We illustrate denoising performance with the SURE Monte Carlo estimator on two
relatively small graphs. This allows for the explicit eigendecomposition of their associated
Laplacian matrices and computation of the SGWT and SURE with which we compare
our proposed method.

New York City taxis

Considering the number of taxi pickups at each intersection from the last experiment
as our signal, we now apply the differential privacy mechanisms presented in Section 3.4
to sanitize it. Both the classical and analytic Gaussian mechanisms are used for different
values of the privacy budget ε and therefore noise levels σ, while the other privacy pa-
rameter is set to δ = 10−6 as in [7]. Note that to satisfy the constraint associated with the
maximum value taken by the ε parameter, the resulting noise levels are particularly high.
We aim to protect the taxi passengers and assume they only take a taxi once within an
hour. This gives an upper bound of their individual contribution to the signal and thus
we have an ℓ2-sensitivity of ∆2f = 1.

We compare different denoising methods using signal-to-noise ratio SNR(f , f̂) =
20 log10(∥f∥2/∥f − f̂∥2) as a performance measure. We also compute it between the
original and noisy signals to get a baseline of the amount of input noise after saniti-
zation: SNRin = SNR(f , f̃). Three denoising methods based on the application of a
level-dependent James-Stein thresholding function to wavelet coefficients are considered,
each of them uses a different criterion to select the optimal thresholds: (1) an oracle es-
timator that directly computes the SGWT and minimizes the real MSE; (2) a second
estimator that instead minimizes SURE; and (3) our proposed estimator that approxi-
mates the SGWT with Chebyshev-Jackson polynomials and estimates SURE with Monte
Carlo. As shown by [39], for a coordinatewise thresholding process such as James-Stein,
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SURE reaches its minimum for some threshold t chosen among the absolute values of the
noisy wavelet coefficients {|F̃ (i)|, i = 1, . . . , n(J + 1)}. We further reduce this set to its
percentiles to find a compromise between the range and number of candidate threshold
values.

These estimators are compared to the DFS fused lasso, a regularization method in-
troduced in [69]. It first performs a standard depth-first search (DFS) traversal algorithm
to reduce the initial graph to a chain graph. Then, it runs a 1-dimensional fused lasso
[125], a special case of graph trend filtering [132], over this simpler graph. In doing so,
this method avoids the prohibitive computational cost of standard graph trend filtering
over an arbitrary graph at the expense of less statistical accuracy. Here, the comparison
is made on unweighted graphs as the DFS fused lasso is limited to them, whereas the
SGWT can be applied to graphs with edge weights. In the experiments, the DFS and
fused lasso are respectively conducted with the igraph [30] and glmgen [5] R packages.

Table 3.1 – Average SNR performance over 10 realizations of high to low privacy budget
sanitization on the NYC graph.

Classical Gaussian mechanism Analytic Gaussian mechanism
ε 0.2 0.3 0.5 1 0.2 0.3 0.5 1
σ 26.49 17.66 10.60 5.30 18.99 12.99 8.06 4.22
SNRin -12.48 ± 0.11 -8.96 ± 0.11 -4.52 ± 0.11 1.5 ± 0.11 -9.59 ± 0.11 -6.29 ± 0.11 -2.14 ± 0.11 3.47 ± 0.11
SGWTMSE 0.23 ± 0.32 1.61 ± 0.26 3.55 ± 0.23 7.0 ± 0.16 1.36 ± 0.27 2.73 ± 0.23 4.79 ± 0.18 8.29 ± 0.15
SGWTSURE 0.1 ± 0.24 1.5 ± 0.31 3.52 ± 0.2 6.94 ± 0.17 1.25 ± 0.38 2.71 ± 0.25 4.75 ± 0.2 8.24 ± 0.18
SGWTCJ

SURE, MC 0.1 ± 0.28 1.51 ± 0.34 3.52 ± 0.24 6.92 ± 0.15 1.3 ± 0.34 2.71 ± 0.25 4.74 ± 0.22 8.24 ± 0.17
DFSMSE 0.88 ± 0.02 1.18 ± 0.09 2.33 ± 0.18 5.58 ± 0.15 1.09 ± 0.09 1.72 ± 0.12 3.43 ± 0.17 6.96 ± 0.16
DFSSURE 0.85 ± 0.03 1.11 ± 0.08 2.26 ± 0.16 5.55 ± 0.14 1.02 ± 0.07 1.65 ± 0.18 3.4 ± 0.15 6.95 ± 0.16

Table 3.1 summarizes the results of this experiment over 10 sanitization realizations.
We observe that the wavelet transform oracle estimator (SGWTMSE) performs better than
the oracle DFS fused lasso (DFSMSE) for most values of privacy budget. When considering
stronger degrees of privacy with the classical Gaussian mechanism which requires the most
amount of input noise, the oracle DFS fused lasso presents better results. Our approach
combining Chebyshev-Jackson polynomial approximation with SURE Monte Carlo esti-
mation (SGWTCJ

SURE, MC) gives slightly lower SNR values than its oracle counterpart but
nevertheless shows better denoising performance compared to the regularization method
except for the case where the noise is very high.

San Francisco taxis

We check these initial results with a second dataset that contains the GPS coordinates
of 536 taxis collected over a month in the San Francisco Bay Area [105]. Each entry
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consists of the taxi location and whether it currently has passengers at a given time
with approximately one minute between updates. In a similar fashion as for the previous
experiment, we concentrate on the city of San Francisco and get the associated graph of
the street network from OSMnx. It is about twice as large with 9,573 vertices and 15,716
edges, causing a longer but still practicable computation of the SGWT.

Pickup locations are inferred by keeping the entries whose occupancy status goes from
“free” to “occupied”, giving an approximation close to the minute. We build a signal by
counting these pickups projected to the nearest intersection on the day of May 25, 2008.
Sanitization is then applied with the analytic Gaussian mechanism and parameter values
δ = 10−6 and ∆2f = 2. The latter is chosen by assuming the individual passengers do a
maximum of four taxi trips within a day, all starting from distinct places.

Table 3.2 – Average SNR performance over 10 realizations of high to low privacy budget
sanitization on the San Francisco graph.

ε 0.20 0.50 1
σ 37.98 16.12 8.45
SNRin -11.95 ± 0.05 -4.51 ± 0.05 1.1 ± 0.05
SGWTMSE 0.80 ± 0.27 4.34 ± 0.11 8.24 ± 0.07
SGWTSURE 0.77 ± 0.31 4.32 ± 0.09 8.22 ± 0.06
SGWTCJ

SURE, MC 0.76 ± 0.32 4.34 ± 0.12 8.22 ± 0.08
DFSMSE 0.22 ± 0.02 3.02 ± 0.1 6.77 ± 0.1
DFSSURE 0.17 ± 0.07 2.99 ± 0.12 6.76 ± 0.1

Results presented in Table 3.2 are in line with those obtained above. The wavelet
transform oracle estimator gives the best overall results and our method performs again
better than the oracle DFS fused lasso for the considered privacy budget values.

3.5.4 Denoising of large graph signals

In this experiment, we apply our method on a large graph whose scale prevents us
from decomposing the Laplacian matrix due to the prohibitive computational cost. The
road network of Pennsylvania from [82] is such a graph consisting of 1,088,092 vertices and
1,541,898 edges. Synthetic signals are generated on this graph following the methodology
proposed in [9]: with two parameters p ∈ (0, 1) and k ∈ N, we produce a signal fp,k =
Wkxp where xp is an i.i.d. realization of n Bernoulli random variables of parameter p.
As this data is entirely simulated and not related to the information of real individuals,
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the added noise does not depend on some privacy budget ε value and is instead directly
chosen. Here, a noisy signal f̃ = f0.001,4 +N (0, σ2In) is generated for different values of σ.
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Figure 3.5 – Average SNR performance over 5 realizations of each noise level setting on
the Pennsylvania graph

Figure 3.5 presents the average SNR values over 5 noise realizations for our proposed
estimator and the oracle DFS fused lasso. We see that the results observed on small graph
signals extend well to the large-scale setting, with better performance for the Chebyshev-
Jackson polynomial approximation with the SURE Monte Carlo estimator on a range of
input SNR similar to the previous experiments.

Regarding computing time, the DFS fused lasso is, however, more efficient than the
approximated SGWT and estimated SURE for this application. On a standard laptop
(Intel Core i5@1.70GHz-16Go DDR4@2400MHz), each of the realizations is denoised in
4 seconds by the regularization method while it takes less about 3 minutes for the latter
after an initial estimation of the SURE weights done in 1 minute. We do not observe
a significant difference between drawing Monte Carlo samples from the Rademacher or
the Gaussian distributions, both take the same amount of time. In our procedure, the
most time-consuming step is the threshold optimization (2m30s), followed by the inverse
wavelet transform (25s) and the forward transform (7s).
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CONCLUSION

In this dissertation, we propose an extension of SURE to large-scale graphs in the
context of signal denoising with thresholding of SGWT coefficients. In particular, we use
Monte Carlo and Chebyshev-Jackson polynomial approximation to build an estimator of
its weights in order to avoid the computationally expensive eigendecomposition of the
graph Laplacian matrix. Provided expressions for the variance of both weights and SURE
estimators show that the Rademacher distribution is better suited than the Gaussian one
for this method. We evaluate our data-driven approach through numerical experiments
with an application in differential privacy to improve the utility of sanitized graph signals.
Results show the MSE can be efficiently estimated with our extended SURE on small and
large graphs. Additionally, this methodology shows better performance than the DFS
fused lasso.

There is room for improvement in this approach to remove noise with better precision.
For instance, the thresholding function we used can be generalized to τβ(x, t) = xmax{1−
tβ|x|−β, 0} with β ≥ 1. Common choices for β include soft thresholding (β = 1) and hard
thresholding (β = ∞) but an optimization algorithm for this parameter would be more
beneficial to further improve performance. An additional thresholding strategy worth
considering is block thresholding which partitions wavelet coefficients within each scale
to identify localized features in the signal. Depending on the regularity of the original
signal, this can help to remove noise with more accuracy as a different threshold value is
selected for each block. An expression of SURE provided for block thresholding processes
with SGWT coefficients by [86] could be extended to large graphs with our approach.

Another direction for future research is to adapt our methodology to be run on a
distributed system in order to further reduce computing time. First, sanitization with the
Gaussian mechanism only consists of the addition of independent Gaussian noise to each
vertex of the graph. Differential privacy in this case can thus be achieved in a distributed
manner over subgraphs of the initial graph. Threshold selection by SURE optimization
can also be computed in a distributed manner thanks to the additive nature of the SURE
formula. But the Laplacian matrix and the SGWT cannot be directly decomposed over
separated groups of graph vertices. This yields at least two important challenges in order
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to distribute 1) the computation of the weights in the SURE formula, and 2) the SGWT
thresholding procedure. For specific graph structures (e.g. relatively distinct subgraphs),
localization properties of the SGWT would certainly help finding accurate approximations
for these distributed computations.

Regarding potential applications combining large graph signal denoising and differ-
ential privacy, we can mention the method from [1] which trains a neural network with
differential privacy guarantees by adding Gaussian noise to the gradient at each training
step. An interesting avenue of research would be to develop an appropriate graph struc-
ture on which the trained model parameters are defined as a noisy signal. Our denoising
methodology may then be used throughout or after the training process in order to restore
some of the performance lost with the sanitization. As neural networks can contain a large
number of parameters, our approach would be well adapted to this application.
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Titre : Débruitage de signaux définis sur des graphes de grande taille avec application à la
confidentialité différentielle

Mots clés : Ondelettes sur graphe, réduction du bruit, confidentialité différentielle

Résumé : Au cours de la dernière décennie,
le traitement du signal sur graphe est devenu
un domaine de recherche très actif. Plus préci-
sément, le nombre d’applications utilisant des
repères construits à partir de graphes, tels que
les ondelettes sur graphe, a augmenté de ma-
nière significative. Nous considérons en parti-
culier le débruitage de signaux sur graphes au
moyen d’une décomposition dans un repère
ajusté d’ondelettes. Cette approche est basée
sur le seuillage des coefficients d’ondelettes à
l’aide de l’estimateur sans biais du risque de
Stein (SURE). Nous étendons cette méthodo-
logie aux graphes de grande taille en utilisant
l’approximation par polynômes de Chebyshev
qui permet d’éviter la décomposition de la ma-
trice laplacienne du graphe. La principale dif-

ficulté est le calcul de poids dans l’expression
du SURE faisant apparaître un terme de cova-
riance en raison de la nature surcomplète du
repère d’ondelettes. Le calcul et le stockage
de celui-ci est donc nécessaire et rédhibitoire
à grande échelle. Pour estimer cette cova-
riance, nous développons et analysons un es-
timateur de Monte-Carlo reposant sur la trans-
formation rapide de signaux aléatoires. Cette
nouvelle méthode de débruitage trouve une
application naturelle en confidentialité diffé-
rentielle dont l’objectif est de protéger les don-
nées sensibles utilisées par les algorithmes.
Une évaluation expérimentale de ses perfor-
mances est réalisée sur des graphes de taille
variable à partir de données réelles et simu-
lées.

Title: Large graph signal denoising with application to differential privacy

Keywords: Graph wavelets, noise reduction, differential privacy

Abstract: Over the last decade, signal pro-
cessing on graphs has become a very ac-
tive area of research. Specifically, the num-
ber of applications using frames built from
graphs, such as wavelets on graphs, has in-
creased significantly. We consider in particu-
lar signal denoising on graphs via a wavelet
tight frame decomposition. This approach is
based on the thresholding of the wavelet co-
efficients using Stein’s unbiased risk estimate
(SURE). We extend this methodology to large
graphs using Chebyshev polynomial approxi-
mation, which avoids the decomposition of the
graph Laplacian matrix. The main limitation is

the computation of weights in the SURE ex-
pression, which includes a covariance term
due to the overcomplete nature of the wavelet
frame. The computation and storage of the lat-
ter is therefore necessary and impractical for
large graphs. To estimate such covariance, we
develop and analyze a Monte Carlo estimator
based on the fast transform of random signals.
This new denoising methodology finds a nat-
ural application in differential privacy whose
purpose is to protect sensitive data used by
algorithms. An experimental evaluation of its
performance is carried out on graphs of vary-
ing size, using real and simulated data.
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