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Abstract

This paper is devoted to adaptive signal denoising in the context of Graph Signal Pro-

cessing (GSP) using Spectral Graph Wavelet Transform (SGWT). This issue is addressed

via a data-driven thresholding process in the transformed domain by optimizing the parame-

ters in the sense of the Mean Square Error (MSE) using the Stein’s Unbiased Risk Estimator

(SURE). The SGWT considered is built upon a partition of unity making the transform semi-

orthogonal so that the optimization can be performed in the transformed domain. However,

since the SGWT is over-complete, the divergence term in the SURE needs to be computed

in the context of correlated noise. Two thresholding strategies called coordinatewise and

block thresholding process are investigated. For each of them, the SURE is derived for a

whole family of elementary thresholding functions among which the soft threshold and the

James-Stein threshold. This multi-scales analysis shows better performance than the most

recent methods from the literature. That is illustrated numerically for a series of signals on

different graphs.

Keywords: Spectral Graph Theory . Denoising . Stein Unbiased Risk Estimation . Spectral

Graph Wavelet Transform . Tight Frame . Variance Estimation

1 Introduction

The emerging field of Graph Signal Processing (GSP) aims to bridge the gap between signal

processing and spectral graph theory (see for instance Chung (1997); Belkin and Niyogi (2008)
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and references therein). One objective is to generalize fundamental analysis operations from

regular grid signals to irregular structures as graphs. There is an extensive literature on GSP,

in particular we refer the reader to Shuman et al. (2013) for an introduction to this field and

Ortega et al. (2018) for an overview of recent developments, challenges and applications. As a

matter of fact, GSP have already been applied in machine/deep learning: convolutional neural

networks (CNN) on graphs Bruna et al. (2014); Henaff et al. (2015); Defferrard et al. (2016),

semi-supervised classification with graph CNN Kipf and Welling (2017); Hamilton et al. (2017),

community detection Tremblay and Borgnat (2014), to name just a few. In the context of GSP,

the authors of Coifman and Lafon (2006); Gavish et al. (2010); Hammond et al. (2011) have

developed wavelet transforms on graphs. More specifically, in Hammond et al. (2011) a fairly

general construction of a frame enjoying the usual properties of standard wavelets is developed:

each vector of the frame is localized both in the graph domain and the spectral domain. The

transform associated with this frame is named Spectral Graph Wavelet Transform (SGWT).

Many studies based on SGWT (or some variants) explore the denoising performance of this

approach using different strategies Leonardi and Van De Ville (2013); Onuki et al. (2016); Wang

et al. (2016); Deutsch et al. (2016); Irion and Saito (2017); Dong et al. (2016); Göbel et al.

(2018) from signal adapted tight frames to regularization method.

The denoising approach chosen in this paper involves several thresholding processes in the

transformed domain of the wavelet coefficients. Actually, this can be seen as an extension to

SGWT of the methodology of Donoho and Johnstone (1995); Cai (1999). With this approach,

the main challenge is the efficient calibration of the parameters minimizing the MSE risk in a

complete data-driven way. Recently, in the setting of discrete wavelets transform on a regular

grid—the so-called regular case—the Stein’s unbiased risk estimate (SURE) has proven to be

a powerful tool for signal/image restoration Luisier et al. (2007); Pesquet et al. (2009); Vaiter

et al. (2013). Based on the Stein’s lemma, this estimator acts as a proxy for the MSE which

cannot be computed in practice since the original signal is unknown. In this paper, the SURE is

explicitly computed for an arbitrary thresholding process in Theorem 1 and for correlated noise

in the graph domain in Corollary 1. Also, let us point out that contrary to the regular wavelet

transform, the SGWT is no longer orthogonal so that a white Gaussian noise in the graph

domain is transformed in a correlated noise. Consequently, the divergence term of the resulting

SURE involves the covariance of the transformed noise making the numerical evaluation less

simple than in the regular case. Afterward, the SURE is specified to the case of coordinatewise

and block thresholding. The latter is inspired by image denoising problems for which a Stein

risk estimator has been proposed in Peyré et al. (2011) to tune both the block-sparsity structure

and the threshold. A similar selection strategy has been developed by Navarro et al. (2013) in

the context of deconvolution. The R package gasper which implements the method introduced
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in this paper is available on github1 (de Loynes et al., 2020) as well as the scripts to reproduce

the results presented2.

Many denoising methods consist in shrinking the coefficients of a sparse representation of

the considered signals in a certain transformed domain. In Talebi and Milanfar (2014), the

aim is to attenuate the coefficients in the Fourier domain corresponding to deletion of the high

frequencies contained in the noisy signal. The selection of the parameters is done by minimizing

the SURE estimating the MSE in a similar way to our methodology. Due to the limited ability of

ideal lowpass graph filter to separate the low-frequency noise, an adaptive weighted graph filter

is proposed in Chen et al. (2020). These two graphs filtering methods can be approximately

mimicked with the SWGT based one by removing the finest scales and an appropriate choice of

the thresholding. However, the localization properties of SGWT both in space and frequency

allow to better process signals with heterogeneous regularity in the initial domain. Intuitively,

the thresholding process in the SGWT transformed domain eliminates the high frequency part

of the noise where the signal is locally regular and tends to keep the peaks of the original signal

whereas the Fourier transform tends to smooth them. This comes at the cost of a redundant

frame in which the transformed noise is no longer stationary neither decorrelated.

Regarding the regularization method implemented in Onuki et al. (2016), the regularization

parameter is also selected optimizing an MSE proxy based on a similar argument. Nonetheless,

beyond the fact that the philosophy is different (regularization versus thresholding), one stress

that the empirical risk bias is explicitly determined while the MSE estimation in Onuki et al.

(2016) is only validated numerically. Another penalization method is given in Wang et al.

(2016) that extends the approach from Tibshirani and Taylor (2011) within the framework of

graphs. For this method, the divergence term is computed explicitly; this gives rise to a data-

driven parameter selection method so that this approach is an interesting concurrent to our

methodology.

The paper is organized as follows. Section 2 introduces the notation and briefly reviews the

notions of tight frame and SGWT of Hammond et al. (2011). Section 3 is devoted to denoising

and the SURE estimator for generic thresholding process in the transformed domain. Then, the

SURE is specified in the cases of coordinatewise, block thresholding processes and for correlated

noise in the graph domain. In Section 4 numerical comparisons with the classical Wiener filter

(oracle version) and the trend filtering introduced in Wang et al. (2016) for denoising are dis-

cussed. Several signals and graphs, including examples from real datasets, are considered. For

these experimental results, the construction of the frame follows Göbel et al. (2018). In terms

of denoising performance, other tight frames such as spectrum adapted and/or signal adapted

1https://github.com/fabnavarro/gasper
2https://github.com/fabnavarro/SGWT-SURE
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tight frames from Shuman et al. (2015) and Behjat et al. (2016) might give better results. Still,

Theorem 1 actually applies to any tight frame and the question of exhibiting the most efficient

one is beyond the scope of the paper (see Shuman (2020) for a comprehensive survey).

2 Spectral Graph Wavelet Transform

2.1 Graphs, Frames and Tight Frames

Let G be an undirected weighted graph, with set of vertices V , and weights (wij)i,j∈V satisfying

wij = wji for i, j ∈ V . The size of the graph is the number of nodes n = |V |. The (unnormalized)

graph Laplacian matrix L ∈ RV×V associated with G is the symmetric matrix defined as L =

D−W , where W is the matrix of weights with coefficients (wij)i,j∈V , and D the diagonal matrix

with diagonal coefficients Dii =
∑

j∈V wij . A signal f on the graph G is a function f : V → R.

Let F = {ri}i∈I be a frame of vectors of RV , that is a family of vectors in RV such that there

exist A,B > 0 satisfying for all f ∈ RV

A‖f‖22 ≤
∑
i∈I
|〈f, ri〉|2 ≤ B‖f‖22. (1)

The linear map TF : RV → RI defined for f ∈ RV by TFf = (〈f, ri〉)i∈I is called the analysis

operator. The synthesis operator is the adjoint of TF: namely, it is the linear map T ∗F : RI → RV

defined for a vector of coefficients (ci)i∈I by T ∗F (ci)i∈I =
∑

i∈I ciri. As a frame is in particular

a generating family of RV , a signal f ∈ RV can be recovered from its coefficients TFf with the

help of the synthesis operator.

2.2 Construction of Tight Frames

A frame F is said to be tight if A = B = 1 in Equation (1)—the latter is then termed the

Parseval identity. From now on, the frames considered are supposed to be tight. Let us recall

the generic construction of such a frame (c.f. Kereta et al. (2019) for instance).

Since L is self-adjoint, it admits the spectral decomposition L =
∑

` λ`〈χ`, ·〉χ`, where λ1 ≥

λ2 ≥ · · · ≥ λn = 0 denote the (ordered) eigenvalues of the matrix L, and (χ`)1≤`≤n are the

associated normalized and pairwise orthogonal eigenvectors. Then, for any function ρ : sp(L)→

R defined on the spectrum sp(L) of matrix L, the functional calculus formula reads ρ(L) =∑
` ρ(λ`)〈χ`, ·〉χ`. A finite collection (ψj)j=0,...,J is a finite partition of unity on the compact

[0, λ1] if ψj : [0, λ1] → [0, 1] for all j ∈ J and ∀λ ∈ [0, λ1],
∑J

j=0 ψj(λ) = 1. Given a finite

partition of unity (ψj)j=0,...,J , the Parseval identity implies that the following set of vectors is a

tight frame:

F =
{√

ψj(L)δi, j = 0, . . . , J, i ∈ V
}
.
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Also, following Leonardi and Van De Ville (2013); Göbel et al. (2018), a partition of unity can

be easily defined as follows: let ω : R+ → [0, 1] be some function with support in [0, 1], satisfying

ω ≡ 1 on [0, b−1], for some b > 1, and set

ψ0(x) = ω(x) and ψj(x) = ω(b−jx)− ω(b−j+1x) for j = 1, . . . , J, where J =

⌊
log λ1
log b

⌋
+ 2.

2.3 Discrete SGWT Associated with a Partition of Unity

Let (ψj)j=0,...,J be a partition of unity of [0, λ1]. The SGWT of a signal f ∈ RV is given by

Wf =
(√

ψ0(L)fT , . . . ,
√
ψJ(L)fT

)T
∈ Rn(J+1).

The adjoint linear transformation W∗ of W is:

W∗
(
ηT0 , η

T
1 , . . . , η

T
J

)T
=
∑
j≥0

√
ψj(L)ηj .

The tightness of the underlying frame implies that W∗W = IdRV so that a signal f ∈ RV

can be recovered by applying W∗ to its wavelet coefficients ((Wf)i)i=1,...,n(J+1) ∈ Rn(J+1) (see

Hammond et al. (2011)).

3 Adaptive Denoising with SGWT

Let f ∈ RV be some signal on a graph G and ξ be an n-dimensional Gaussian vector distributed

as N (0, σ2Id). The aim of denoising is to recover the unknown signal f from the observed noisy

version f̃ = f+ξ. Basically, our denoising procedure will consist of three steps: (1) compute the

SGWT transformW f̃ ∈ Rn(J+1); (2) apply a given thresholding operator h(·) to the coefficients

W f̃ ; (3) apply the inverse SGWT transform to obtain an estimation f̂ of the original signal.

Here, the main challenge in denoising consists in choosing a suitable thresholding operator with

respect to the noisy signal f̃ and the underlying graph. The performance measure in the sequel

will be the MSE between the original signal f and the denoised signal f̂ : ‖f − f̂‖22. First, it is

worth noting that the Parseval identity allows direct optimization in the transformed domain

of wavelet coefficients. Secondly, in practice, obviously the original signal remains unknown.

To overcome this difficulty, the MSE is generally substituted with the Stein’s Unbiased Risk

Estimator which no longer depends on the original signals (see Donoho and Johnstone (1995)

for instance). Nonetheless, contrary to the usual wavelet transform, the white noise ξ is mapped

onto a correlated Gaussian noise. In the next section, the SURE is derived taking into account

these correlations.
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3.1 The SURE Estimator in the Transformed Domain

By linearity, the denoising problem f̃ = f + ξ is transferred to the denoising problem F̃ = F +Ξ

with Ξ ∼ N (0, σ2WW∗), F̃ =W f̃ and F =Wf . It is worth noting that WW∗ is an orthogonal

projector of rank n in Rn(J+1) (see Göbel et al. (2018) for instance). Consequently, its spectral

decomposition reads WW∗ = UΣU∗ with U a unitary matrix of Rn(J+1) and Σ =
(
IdRn 0
0 0

)
.

A thresholding process is a map h : Rn(J+1) → Rn(J+1). Typically, the map h is a coordinate-

wise or a block shrinkage in applications. The following result extending the SURE’s expression

to correlated noise is based on the Stein’s lemma in Stein (1981) in which h is assumed to be

weakly differentiable. One refers the reader to Stein (1981) for the precise definition.

Theorem 1 (h-SURE). Let h be a weakly differentiable thresholding process for the denoising

problem F̃ = F + Ξ. Then the theoretical MSE is given by

E‖h(F̃ )− F‖2 = E

−nσ2 + ‖h(F̃ )− F̃‖2 + 2

n(J+1)∑
i,j=1

Cov(Ξi,Ξj)∂jhi(F̃ )

 ,
where hi is the i-th component of h.

It is worth noting that Cov(Ξi,Ξj) = σ2(WW∗)i,j so that, as soon as the thresholding

process h is specified and the noise variance σ2 estimated, the SURE of h defined below can be

completely computed from the noisy observations as in the regular case:

SURE(h) = −nσ2 + ‖h(F̃ )− F̃‖2 + 2

n(J+1)∑
i,j=1

Cov(Ξi,Ξj)∂jhi(F̃ ).

Proof. The theoretical MSE can be rewritten as follows

E‖h(F̃ )− F‖2 = E‖h(F̃ )− F̃‖2 + E‖Ξ‖2 + 2E〈h(F̃ )− F̃ ,Ξ〉.

The second term is equal to nσ2 since almost surely ‖Ξ‖2 = ‖U∗Ξ‖2 = ‖PKU∗Ξ‖2 where

K = ker(WW∗)⊥ and PK the orthogonal projection onto K. Finally, setting g(x) = h(x) − x,

x ∈ Rn(J+1), it remains to compute the last term E〈g(F̃ ),Ξ〉 = E〈g(F + Ξ),Ξ〉 where F is

deterministic and Ξ ∼ N (0, σ2WW∗). A simple computation gives

E〈g(F + Ξ),Ξ〉 =

n(J+1)∑
i=1

E[gi(F + Ξ)Ξi] =

n(J+1)∑
i=1

Cov(gi(F + Ξ),Ξi).

Then, following Liu (1994), each term in the sum above is given by

Cov(gi(F + Ξ),Ξi) = −nσ2 +

n(J+1)∑
j=1

Cov(Ξi,Ξj)E[(∂jhi)(F + Ξ)],

since Tr(σ2WW∗) = nσ2. This ends the proof of Theorem 1.
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3.2 Coordinatewise Thresholding Process

For a coordinatewise thresholding process, the map h is of the form h(x) = (τ(xi, ti))i=1,...,n(J+1)

where (ti)i=1,...,n(J+1) are the thresholds. In practice, we may choose τ(x, t) = xmax{1 −

tβ|x|−β, 0} with β ≥ 1. The most popular choices are the soft thresholding (β = 1), the James-

Stein thresholding (β = 2) and the hard thresholding (β =∞). The latter will not be considered

here since it does not lead to a sufficiently regular thresholding process for Theorem 1 to be

applied.

For any β ∈ [1,∞), the derivative ∂jhi vanishes whereas

∂ihi(F + Ξ) = 1[ti,∞)(|F̃i|)

[
1 + (β − 1)

tβ

|F̃i|β

]
.

Consequently, the SURE associated with h is given by

SURE(h) = −nσ2 +

n(J+1)∑
i=1

F̃ 2
i

(
1 ∧

tβi

|F̃i|β

)2

+ 2

n(J+1)∑
i=1

V(Ξi)1[ti,∞)(|F̃i|)

[
1 +

(β − 1)tβi

|F̃i|β

]
. (2)

The usual expression of the SURE is recovered from the identity above remarking that V[Ξi]

are identically equal to σ2 when the transformed noise is uncorrelated.

Let us notice that the coordinatewise soft thresholding (β = 1) satisfies an oracle inequality

as shown in Göbel et al. (2018). Similarly to the regular case, it states that up to a log factor,

the soft thresholding estimator can mimic an oracle projection.

3.3 Optimization: Donoho and Johnstone’s Trick

The SURE can be optimized in the same way as in the standard case using the Donoho and

Johnstone’s trick of Donoho and Johnstone (1995) whose the justification is recalled below.

For the sake of simplicity, we first consider the case of the coordinatewise thresholding

process with a uniform threshold: ti = t for all i = 1, . . . , n(J + 1). Denote by a1, . . . , an(J+1)

the absolute values of the noisy wavelet coefficients |F̃i| in the increasing order. The trick comes

from the observation that, on each interval (ak, ak+1), the last term of Equation (2) is non-

decreasing whereas the second term is an increasing function of t. Consequently, the SURE hits

its minimum at some value ak∗ , k
∗ = 1, . . . , n(J + 1).

If the thresholds ti are no longer uniform but merely tied inside blocks with values t1, . . . , tL,

the same trick is still valid: group the terms in the sums along the different parameters t1, . . . , tL

and optimize each partial sum with respect to tk, k = 1, . . . , L.

3.4 Block Thresholding Process

In order to take advantage of the localization properties of SGWT and the regularity of the

original signal, we may introduce block thesholding processes similar to Cai (1999).
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Consider a partition (B`)`∈L of {1, . . . , n(J + 1)} and set ‖x‖2B` =
∑

i∈B`(xi)
2. In this case,

the thesholding process h = (hi)i=1,...,n(J+1) reads

hi(x) = xi max

{
1−

tβ`

‖x‖βB`
, 0

}
, x ∈ Rn(J+1), and ` ∈ L : i ∈ B`.

If i, j are in different blocks, then ∂jhi vanishes. Additionally, if i, j are in B` but i 6= j then

∂jhi(F̃ ) = F̃i1[t`,∞)(‖F̃‖B`)βt
β
` F̃j‖F̃‖

−β−2
B`

,

whereas

∂ihi(F̃ ) = 1[t`,∞)(‖F̃‖B`)
(

1− tβ` ‖F̃‖
−β
B`

+ βtβ` F̃
2
i ‖F̃‖

−β−2
B`

)
.

Consequently, a straightforward computation leads to

SURE(h) = −nσ2 +
∑
`∈L

(
1 ∧

tβ`

‖F̃‖βB`

)2

‖F̃‖2B`

+ 2
∑
`∈L

1[t`,∞)(‖F̃‖B`)

(1−
tβ`

‖F̃‖βB`

)∑
i∈B`

V(Ξi) +
βtβ`

‖F̃‖β+2
B`

∑
i,j∈B`

Cov(Ξi,Ξj)F̃iF̃j



Once again, for uncorrelated transformed noise, the usual expression easily follows from the iden-

tity above. Note also that the optimization of the SURE in this case requires more sophisticated

techniques as the divergence term is no longer monotone.

3.5 Correlated Noise in the Graph Domain

The SURE can also be stated in the context of correlated noise at the cost of some prior

information on the covariance structure. More precisely, in the denoising problem f̃ = f + ξ

with correlated noise, it is supposed that ξ ∼ N (0,Γ) for some covariance matrix Γ. The

denoising problem reads in the transformed problem as F̃ = F + Ξ with Ξ ∼ N (0,WΓW∗).

Corollary 1. Under the assumption of Theorem 1, the theoretical MSE is given by

E[‖h(F̃ )− F‖2] = E

[
− Tr(WΓW∗) + ‖h(F̃ )− F̃‖2 + 2

n(J+1)∑
i,j=1

Cov(Ξi,Ξj)∂jhi(F̃ )

]
,

where hi is the i-th component of h.

Let us point out that the parameters selection can be made without computing explic-

itly Tr(WΓW∗) since it does not depend on h—even though, the MSE estimate is obviously

shifted by this quantity. Besides, the correlation structure Γ is actually hidden in the quanti-

ties Cov(Ξi,Ξj), namely, for 1 ≤ i, j ≤ n(J + 1): Cov(Ξi,Ξj) =
(
WΓW∗

)
i,j

. Consequently,

computationally speaking, there is no additional burden compared to the white noise case.



Data-driven Thresholding in Denoising with Spectral Graph Wavelet Transform 9

Proof. The proof follows the lines of Theorem 1 with E[Ξ2
i ] =

(
WΓW∗

)
i,i
, 1 ≤ i ≤ n(J + 1).

In applications, it is usually reasonable to assume some structure on the covariance matrix Γ

reflecting the topology of the underlying graph. Typically, the noise on two given vertices may

be correlated if those vertices are close enough in the graph. For example, let ξ0 ∼ N (0, σ2Id),

we set ξ = ξ0 +αWξ0 where W is the graph matrix of weights and α > 0 some tuning parameter

describing the global intensity of the correlation. Then, it follows,

Γ = σ2(Id + 2αW + α2WW ∗). (3)

Other choices are obviously possible.

3.6 Complexity

Regarding the space complexity, we need to store the frame and the weights appearing in the

SURE for a cost of O(n2(J+1)2). With given Laplacian eigendecomposition, the time complexity

of the optimization of the SURE is (in average) of order O(n(J + 1) log(n(J + 1))) for the

coordinate-wise estimator following [8]. For the block estimator, the use of a grid search is a

limitation.

4 Numerical Results

This section presents the empirical performance of the proposed automatic threshold selection

for different signals defined on different graphs: the Minnesota roads graph (seen as a reference

in many recent studies, see Behjat et al. (2016) and references therein) with synthetic signals and

the Facebook graph with signals from Wang et al. (2016), the Pittsburgh Census Tract graph,

a graph built from a dataset on New York City taxis with a real signal as well as numerical

experiments in the correlated and block cases. All the experiments are conducted with the R

package gasper.

4.1 The Minnesota Roads Graph

The Minnesota roads graph is a planar graph consisting of 2642 vertices and 6606 edges. Each

vertex is described by its (x, y)-coordinates. The function ω chosen in the experiments is a

piecewise linear function with support in [0, 1] and constant equal to 1 on [0, b−1] with b = 2.

From λ1 ≈ 6.89, we deduce that the number of scales is J + 1 = 5—see Section 2.

On this graph, two classes of synthetic signals are generated inspired by the methodology

introduced in Behjat et al. (2016). Let us briefly recall the construction: let η ∈ (0, 1) and k ∈ N

be two parameters; a signal fη,k is obtained by letting the adjacency matrix W acts on an i.i.d.
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Figure 1: Signals used on the Minnesota graph.

realization xη of Bernoulli random variables of parameter η, in symbols fη,k = W kxη/λ
k
1. This

method generates signals with different regularities. This has to be understood in the sense of

the graph topology and not that one given by the embedding space R2. In the experiment, two

signals are generated with parameters η = 0.01, k = 2 and η = 0.001, k = 4 respectively (see

Figure 1 left and right respectively).

We compare the performance in terms of SNR (computed on the functions after reconstruc-

tion) for different denoising strategies, different noise levels and each synthetic signal fη,k. For

each noise level σ = 0.005, 0.01, 0.02 and σ = 0.001, 0.002, 0.004, a sample of N = 10 white Gaus-

sian noise is simulated and a global (G) versus level-dependent (LD) coordinatewise thresholding

are performed with respect to the soft (β = 1) and James-Stein (β = 2) thresholding rules. For

each strategy, we compare the average behavior of the SNR for parameter selected with the

oracle (MSEβ=1,2 obtained by minimizing the MSE using the original signal f) and the SURE

with known σ (SUREβ=1,2
σ ). Also, the standard deviation on the sample is provided.

These results are first compared to the classical Wiener filter. More precisely, the Wiener

filter consists of attenuating the Fourier coefficient F(f̃) of f̃ . Below, we only consider the oracle

linear attenuation F(f̃)[i]F(f)[i]/(F(f)[i]2 + σ2). While this estimator is unrealistic since it

depends on f , any Wiener filter has worse performance than this oracle. Table 1 is completed

by the performance of the Wiener filter on each signal. Also, the theoretical value rinf of the

oracle risk given in Mallat (2009) is recalled for comparison purpose.

Our methodology is also compared to the so-called graph trend filtering (i.e. for k = 0, 1, 2)

introduced in Wang et al. (2016). The graph trend filtering is a regularization method with a

penalty term involving the graph difference operator at a given order (see Wang et al. (2016)).
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In the experiments, we make use of the matlab toolbox gtf3 provided by the authors of Wang

et al. (2016).

Table 1: Mean SNR performance over N = 10 realizations of the low to high noise levels settings

with corresponding empirical standard deviation. Left panel: f0.01,2 and right panel: f0.001,4.

SNRin 16.07±0.13 10.05±0.13 4.03±0.13 16.64±0.13 10.62±0.13 4.60±0.13

MSEβ=1,G 19.04±0.24 14.22±0.26 9.46±0.26 24.67±0.33 19.77±0.36 14.79±0.45

MSEβ=2,G 20.07±0.24 15.60±0.30 10.69±0.30 26.88±0.29 22.18±0.37 17.08±0.67

SUREβ=1,G
σ 18.96±0.27 14.16±0.29 9.46±0.26 24.62±0.37 19.64±0.48 14.70±0.52

SUREβ=2,G
σ 20.04±0.37 15.49±0.43 10.64±0.32 26.73±0.32 21.91±0.52 16.88±0.59

MSEβ=1,LD 19.10±0.24 14.28±0.27 9.58±0.27 24.68±0.34 19.79±0.36 14.83±0.46

MSEβ=2,LD 20.08±0.24 15.61±0.29 10.72±0.30 26.90±0.26 22.20±0.36 17.13±0.67

SUREβ=1,LD
σ 19.10±0.24 14.26±0.26 9.48±0.24 24.51±0.40 19.59±0.46 14.69±0.49

SUREβ=2,LD
σ 20.01±0.31 15.51±0.36 10.61±0.39 26.52±0.32 21.79±0.34 16.73±0.60

Wiener 17.01±0.13 11.87±0.15 7.43±0.16 17.91±0.12 12.86±0.13 8.40±0.16

rinf 17.05±0.00 11.89±0.00 7.42±0.00 17.96±0.00 12.91±0.00 8.46±0.00

MSEk=2 17.35±0.13 11.43± 0.16 5.68±0.17 19.37±0.14 13.65±0.18 8.01±0.24

MSEk=1 18.05±0.14 11.98±0.18 6.24±0.18 20.43±0.15 14.78±0.18 9.30±0.27

MSEk=0 19.57±0.17 13.43±0.23 7.62±0.22 23.38±0.25 17.88±0.27 12.80±0.40

Generally speaking, we observe from Table 1 that our method performs better than the trend

filtering motivating the use of multiscale analysis. This idea is confirmed by the comparison

with the Wiener filter, in particular in the lower SNR regime that is for higher noise levels.

Also, similarly to the regular case, numerical experiments shows that the James-Stein threshold

(β = 2) is slightly more efficient than the soft threshold in particular for the global thresholding

process.

Let us point out that there is no fundamental difference in terms of performance between

the global and level dependent thresholding in this experiment. In fact, the level dependent

thresholding always performs at least as good as the global one. Since the additional computa-

tional cost is acceptable, the level dependent thresholding appears to be a good choice without

any further a priori knowledge.

4.2 The Facebook Graph

Here we examined and compare the denoising performance of level dependent SGWT thresh-

olding (LD) against the trend filtering and Laplacian smoothing Smola and Kondor (2003) on

3Available here: https://sites.cs.ucsb.edu/ yuxiangw/resources.html
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a nonplanar graph considered in Wang et al. (2016): the Facebook graph from the Stanford

Network Analysis Project4. This undirected graph, collected from survey participants using

this Facebook app, is composed of 4039 nodes representing Facebook users, and 88,234 edges

representing friendships (see Leskovec and Mcauley (2012) for more details). For signal f , we

consider the different regularities used in Wang et al. (2016) as well as the same noise levels, for

5 realizations (see (Wang et al., 2016, Section 5.1) for more details). More precisely, we simply

run the scripts provided in the matlab toolbox provided by the authors of Wang et al. (2016).

The results are shown in the Figure 2 (to be compared with (Wang et al., 2016, Figure 5 p.14

and Figure 9 p.27)). With the exception of the dense Poisson case, where all methods provide
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Figure 2: Mean SNR performance over N = 5 realizations on the Facebook graph.

comparable results, LD globally provides better performance than trend filtering (whatever the

value of k), especially at high noise levels where the maximal gain in terms of SNR is greater

than 15dB and exceeds 5dB and 10dB respectively for the 5 highest noise levels for inhomo-

4http://snap.stanford.edu/data/ego-Facebook.html

http://snap.stanford.edu/data/ego-Facebook.html
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Figure 3: Influence of the number of scales on the denoising performance.

geneous and homogeneous random walk cases. For this graph, the CPU times associated with

trend filtering (for k = 1 and k = 2) for one type of signal and 5 realizations (and a 51-point

grid search) are of the order of 3 to 4 days (depending on the case), for LD around 25 minutes

(including diagonalization and frame calculation which only need to be calculated once).

The calibration of certain parameters has not been studied. However, the latter can con-

siderably influence the performance of the SGWT. For the homogeneous random walk case, we

examine here the influence of the number of scales retained for the construction of the frame

and controller by b. For b = 5, 4, 3, the frame contains respectively 7, 8, 9 scales. The results are

shown in Figure 2, where it can be seen that the frame composed of 7 scales produces the best

results. Note that these performances might be improved, for example by making the SURE

depend on the β parameter characterizing the threshold rule. The frame considered here has

only one parameter, other more flexible constructions, based on a partition of the unit or other

types of tight frames such as spectrum adapted and/or signal adapted tight frames from Shuman

et al. (2015) and Behjat et al. (2016) could also lead to an improvement.

4.3 Pittsburgh Census Tract Graph

For the sake of completeness, our methodology is also compared to the trend filtering on the

Pittsburgh Census Tract graph considered in Wang et al. (2016) which consists of 402 vertices

and 2382 edges. The very same piecewise linear function ω with b = 2 is still used for this graph.

The number of scales is then J + 1 = 7. For this experiment, only the level dependent threshold

procedure is considered.

We consider the signal and 10 realizations of the noisy signal generated in Wang et al. (2016)
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(corresponding to an average noise level of 4.84± 0.37dB). The resulting SNR for the oracles of

SGWT and fused lasso (i.e. k = 0) are respectively 11.51± 0.52dB and 9.85± 0.54dB.

Additionally, we run a comparison with the trend filtering (i.e. for k = 0, 1, 2) for the signal

fη,k with η = 0.01 and k = 5 with the different noise levels σ = 0.004, σ = 0.005 and σ = 0.01. A

comparison with another wavelet estimator proposed in Sharpnack et al. (2013) is also provided,

considering two thresholding rules (i.e. “soft” and “hard”). For these 5 competitors we only

report the oracles results.

Even though the SURE no longer depends on the original signal, it does depend on σ2 in

both methodologies. Since in real applications, the noise level remains unknown in general, we

introduce two naive estimators of σ. In fact, a straightforward computation shows that for any

function g : R+ → R+:

E[f̃T g(L)f̃ ] = fT g(L)f + E[ξT g(L)ξ] = fT g(L)f + σ2Tr g(L),

so that a biased estimator of σ2 is given by

σ̂21 =
f̃T g(L)f̃

Tr g(L)
.

As soon as the original signal is reasonably smooth so that fT g(L)f is negligible compared to

Tr g(L), then σ̂2 is an accurate enough estimation of σ2. As a first choice, we choose g(x) = x.

Thanks to Dirichlet’s formula, it follows:

σ̂21 =
f̃TLf̃
Tr L

=

∑
i,j∈V wij |f̃(i)− f̃(j)|2

2 Tr L
.

This is nothing but the graph analogue of the Von Neumann estimator of von Neumann (1941)

explaining the terminology Graph Von Neumann estimator (GVN).

A second natural choice is given by g(x) = ψJ(x) corresponding to the filter at the finest

scale. The resulting estimator is called High Pass Filter Von Neumann (HPFVN). The value of

the estimator is easily computed from the coefficients as follows:

σ̂22 =

∑n(J+1)
i=nJ+1(W f̃)2i
Tr ψJ(L)

.

Table 2 summarizes the findings with the nomenclature of Table 1 (where LD stands for

level-dependent (LD) coordinatewise thresholding) of the main document. Lines SUREβ=1,2
σ̂1,2

stand for the SURE procedure in which the noise level is estimated by the GVN (σ̂1) and the

HPFVN (σ̂2). HPFVN and GVN provide a very comparable sigma estimate in this setting.

Additionally, a visual comparison of our methodology with the fused lasso is illustrated in

Figure 4 (corresponding to one realization in the context of the third column of the Table 2).

We can see that our approach provides a gain of about 2.5dB compared to the fused lasso.
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Table 2: Mean SNR performance over N = 10 realizations with f0.01,5 for the Pittsburgh graph.

σ 0.004 0.005 0.01

σ̂1 0.0065 0.0072 0.0113

σ̂2 0.0068 0.0074 0.0114

SNRin 9.53±0.29 7.60±0.29 1.58±0.29

MSEβ=2,LD 13.65±0.29 12.22±0.34 8.46±0.41

MSEk=2 12.28±0.25 11.05±0.22 8.14±0.29

MSEk=1 13.10±0.21 11.78±0.22 8.09±0.36

MSEk=0 12.83±0.23 11.42±0.24 7.56±0.46

MSESoft 11.22±0.23 9.62±0.27 5.22±0.22

MSEHard 10.22±0.28 8.50±0.38 4.03±0.14

SUREβ=2,LD
σ 13.33±0.37 12.00±0.30 7.95±0.25

SUREβ=2,LD
σ̂1

12.35±0.53 11.38±0.62 8.13±0.35

SUREβ=2,LD
σ̂2

12.12±0.57 11.27±0.54 8.07±0.33

Again, in these experiments, the multiscale analysis shows better performances than the

trend filtering. Besides, the estimation of σ is sufficiently accurate to have a fully data-driven

procedure.

To conclude, let us stress that the SGWT is computationally more efficient than the GTF

(k = 1, 2). For the latter, on a standard laptop (Intel Core i7@2.7GHz-16Go LP-DDR3@2133MHz),

each 10 realizations consumed about 4h16m cpu time in mean (min:1h45m, max:6h19m) with

the same grid search as for the Pittsburg in Wang et al. (2016). The CPU consumption for

k = 0 is more decent with a mean of 3m for each 10 realizations exploiting the idea and the c++

code of Chambolle and Darbon (2009). Incidentally, this main drawback of GTF was noticed

in Padilla et al. (2018) forcing a preprocessing of the graph using Depth-first search algorithm.

The SGWT on its side consumed 3min for the diagonalization and 42s for each 10 realizations.

4.4 Real Dataset: New York City Taxis

Our methodology has been also tested on a real data fetched from NYC taxis5 databases. We

build a graph with 265 vertices consisting of the LocationID (Pick-Up and Drop-Off) and define

Gaussian weights wij = exp(−τd2i,j) where di,j is the mean distance taken on all the trips

between i and j or j and i. The signal f considered is defined upon the variable “total amount”

on which an artificial noise is added. For an average input SNRin = 5.23 ± 0.38dB on N = 25

observations, we obtain for the level dependent SURE with β = 2 and σ known, an output SNR

5https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-01.csv

https://s3.amazonaws.com/nyc-tlc/trip+data/yellow_tripdata_2018-01.csv
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Figure 4: Typical reconstruction for the Allegheny County example.

of 10.41±0.62dB compared to the performance of the oracle Wiener filter, SNR = 7.50±0.40dB

and the oracle fused lasso, SNR = 5.69± 0.43dB.

4.5 Correlated Noise

On the Minnesota roads graph and for the signal fη,k of Section 4 with η = 0.01 and k = 2, we

add one realization of a correlated noise with covariance matrix given by (3) where α = 0.5 is

added leading to a noisy signal with SNRin = 2.07dB. We run the level-dependent coordinate-

wise thresholding process. The SNR given by the oracle involving the unknown signal fη,k and

the one given by the SURE estimator adapted to correlated noise are similar: 8.54dB versus

8.51dB. In this case, the SURE for uncorrelated noise shows very bad performances: we found

4.33 for the corresponding SNR.
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The quality of the SURE for uncorrelated noise is closely related to the intensity of the

correlation tuned by the parameter α. As an example, if we choose α = 0.1, the SURE adapted

to correlated noise still performs very well with an estimated SNR of 10.44dB compared to the

oracle 10.46dB. The SURE for uncorrelated noise is nonetheless not that bad since it estimates

the SNR at 9.78dB.

Consequently, the SURE estimate for uncorrelated noise is robust to small correlations which

is particularly interesting in applications since it can be difficult to estimate the correlation

structure.

4.6 Further Experiments with Block Thresholding

Finally, we report some experimental results in the context of block thresholding in the setting

of Section 4.3. For each scale j = 0, 1, . . . , 7, the n wavelet coefficients are split into L blocks

of uniform length (except for the last block that can be shorter). The best performance of

block thresholding is achieved for blocks of size |L| = 47. The SNRin = 9.64 ± 0.33dB for

25 realizations. For the oracle global coordinate-wise threshold with β = 2, we obtain a SNR

of 11.07 ± 0.33dB compared to the block procedure with a uniform threshold 11.82 ± 0.40dB.

The block procedure performs better than the coordinate-wise one for a uniform threshold

but is actually worse compared to the level dependent coordinate-wise thresholding process.

The level-dependent method is expected to give better performance, but would require a more

sophisticated optimization algorithm than grid search to be computationally acceptable.

5 Conclusion and Perspectives

In this paper, we have introduced a version of the SURE designed for SGWT, allowing auto-

matic parameter selection in denoising tasks of signals on graphs. Closed-form expressions for

coordinatewise and block SUREs have been provided for a wide range of threshold rules. Finally,

the case of a correlated noise in the graph has also been considered. Many experiments on the

Minnesota graph, the Facebook graph built, the Pittsburgh graph and the NYC taxis graph

from real data are conducted.

For signals of different regularity on those graphs, it has been shown that the SURE pro-

vides an efficient estimate of the theoretical MSE. These experiments also show that multi-scale

analysis is a serious competitor to existing methods. Indeed, the SGWT shows performances

equivalent and sometimes even much better than the GTF, especially at high noise levels.

To be complete, the variance parameter σ2 should be estimated. This has been (partially)

addressed in the supplementary material by introducing the two estimators HPFVN and GVN.
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The performance of these estimators highly depends on the underlying signal. Further investi-

gations seem to be necessary.

Theoretically, the coordinatewise soft thresholding in the transformed domain satisfies an

oracle inequality as shown in Göbel et al. (2018). Similarly to the regular case, this oracle

inequality states that the estimator mimics the oracle projection up to a log factor. The proof

relies on the fact that the multivariate risk is expressed as a sum of univariate risks so that

the Donoho’s machinery applies. Using this fact, a maximal inequality for the SURE might be

stated as well.

Regarding, the numerical complexity, the main limitation is the need of a complete reduction

of the Laplacian. In the same vein as Hammond et al. (2011), many of the involved steps might

be numerically optimized using Chebyshev polynomials. Actually, the only problematic step in

the method is the computation of the weights (WW∗)i,j appearing in the SURE. However, their

expression in terms of covariance suggests that Monte-Carlo estimation could work. Besides,

the space-time complexity might be reduced taking advantage of the low-rank property ofWW∗

implying several linear constraints on the weights (precisely nJ). Finally, for the block procedure

to be completely useful, an adapted optimization algorithm should be implemented.

Some questions not addressed in the paper remains open. As already announced in intro-

duction of the paper, the choice of a suitable frame for different graphs and different families of

signals is still an open problem in spite of advances in recent years. Most likely, good choices

of frame should involve a notion of graph limit such as the one introduced for graphons (see

Lovász (2012)) or the more probabilistic Benjamin-Schramm limit introduced in Benjamini and

Schramm (2001). This formal study should also give rise to less nave estimators of the noise

level and above all give recommendations according to the class of signals considered.
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